Suppr超能文献

使用预后模型预测人群中主要肝脏相关事件。

Prediction of major liver-related events in the population using prognostic models.

作者信息

Åberg Fredrik, Männistö Ville

机构信息

Transplantation and Liver Surgery Unit, Helsinki University Hospital and University of Helsinki, Helsinki, Finland.

School of Medicine, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland.

出版信息

Gastroenterol Rep (Oxf). 2025 Mar 14;13:goaf028. doi: 10.1093/gastro/goaf028. eCollection 2025.

Abstract

Liver disease poses a significant global health burden, with steatotic liver disease related to metabolic dysfunction and/or alcohol use being the most prevalent type. Current risk stratification strategies emphasize detecting advanced fibrosis as a surrogate marker for liver-related events (LREs), such as hospitalization, liver cancer, or death. However, fibrosis alone does not adequately predict imminent outcomes, particularly in fast-progressing individuals without advanced fibrosis at evaluation. This underscores the need for models designed specifically to predict LREs, enabling timely interventions. The Chronic Liver Disease (CLivD) risk score, the dynamic aspartate aminotransferase-to-alanine aminotransferase ratio (dAAR), and the Cirrhosis Outcome Risk Estimator (CORE) were explicitly developed to predict LRE risk rather than detect fibrosis. Derived from general population cohorts, these models incorporate either standard liver enzymes (dAAR and CORE) or risk factors (CLivD), enabling broad application in primary care and population-based settings. They directly estimate the risk of future LREs, improving on traditional fibrosis-focused approaches. Conversely, widely used models like the Fibrosis-4 index and newer ones, such as the LiverRisk and LiverPRO scores, were initially developed to detect significant/advanced fibrosis or liver stiffness. While not designed for LRE prediction, they have later been analyzed for this purpose. Integrating fibrosis screening with LRE-focused models like CLivD, dAAR, and CORE can help healthcare systems adopt proactive, preventive care. This approach emphasizes identifying individuals at imminent risk of severe outcomes, potentially ensuring better resource allocation and personalized interventions.

摘要

肝脏疾病给全球健康带来了重大负担,其中与代谢功能障碍和/或饮酒相关的脂肪性肝病是最常见的类型。当前的风险分层策略强调将检测到的晚期纤维化作为肝脏相关事件(如住院、肝癌或死亡)的替代指标。然而,仅纤维化并不能充分预测近期的结果,尤其是在评估时没有晚期纤维化但进展迅速的个体中。这凸显了需要专门设计用于预测肝脏相关事件的模型,以便能够及时进行干预。慢性肝病(CLivD)风险评分、动态天冬氨酸转氨酶与丙氨酸转氨酶比值(dAAR)以及肝硬化结局风险评估器(CORE)是专门为预测肝脏相关事件风险而开发的,而不是用于检测纤维化。这些模型源自普通人群队列,纳入了标准肝酶(dAAR和CORE)或风险因素(CLivD),能够在初级保健和基于人群的环境中广泛应用。它们直接估计未来肝脏相关事件的风险,改进了传统的以纤维化为重点的方法。相反,广泛使用的模型如Fibrosis-4指数以及较新的模型,如LiverRisk和LiverPRO评分,最初是为了检测显著/晚期纤维化或肝脏硬度而开发的。虽然不是为预测肝脏相关事件而设计,但后来也针对此目的进行了分析。将纤维化筛查与CLivD、dAAR和CORE等以肝脏相关事件为重点的模型相结合,可以帮助医疗系统采取积极的预防保健措施。这种方法强调识别有严重后果近期风险的个体,有可能确保更好的资源分配和个性化干预。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aa60/11908767/0eff8699fb8d/goaf028f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验