Castelli Erick C, Pereira Raphaela Neto, Paes Gabriela Sato, Andrade Heloisa S, Ferreira Marcel Rodrigues, de Freitas Santos Ícaro Scalisse, Vince Nicolas, Pollock Nicholas R, Norman Paul J, Meyer Diogo
Department of Pathology, School of Medicine, São Paulo State University (Unesp), Botucatu, Brazil.
Molecular Genetics and Bioinformatics Laboratory (GeMBio) - Experimental Research Unit, School of Medicine, São Paulo State University (Unesp), Botucatu, Brazil.
HLA. 2025 Mar;105(3):e70092. doi: 10.1111/tan.70092.
Killer cell immunoglobulin-like receptors (KIRs) regulate natural killer (NK) cell responses by activating or inhibiting their functions. Genotyping KIR genes from short-read second-generation sequencing data remains challenging as cross-alignments among genes and alignment failure arise from gene similarities and extreme polymorphism. Several bioinformatics pipelines and programs, including PING and T1K, have been developed to analyse KIR diversity. We found discordant results among tools in a systematic comparison using the same dataset. Additionally, they do not provide SNPs in the context of the reference genome, making them unsuitable for whole-genome association studies. Here, we present kir-mapper, a toolkit to analyse KIR genes from short-read sequencing, focusing on detecting KIR alleles, copy number variation, as well as SNPs and InDels in the context of the hg38 reference genome. kir-mapper can be used with whole-genome sequencing (WGS), whole-exome sequencing (WES) and sequencing data generated after probe-based capture methods. It presents strategies for phasing SNPs and InDels within and among genes, reducing the number of ambiguities reported by other methods. We have applied kir-mapper and other tools to data from various sources (WGS, WES) in worldwide samples and compared the results. Using long-read data as a truth set, we found that WGS kir-mapper analyses provided more accurate genotype calls than PING and T1K. For WES, kir-mapper provides more accurate genotype calls than T1K for some genes, particularly highly polymorphic ones (KIR3DL3 and KIR3DL2). This comparison highlights that the choice of method has to be considered as a function of the available data type and the targeted genes. kir-mapper is available at the GitHub repository (https://github.com/erickcastelli/kir-mapper/).
杀伤细胞免疫球蛋白样受体(KIRs)通过激活或抑制自然杀伤(NK)细胞的功能来调节其反应。从短读长第二代测序数据中对KIR基因进行基因分型仍然具有挑战性,因为基因之间的交叉比对以及由于基因相似性和极端多态性导致的比对失败。已经开发了几种生物信息学流程和程序,包括PING和T1K,用于分析KIR多样性。我们在使用相同数据集的系统比较中发现工具之间的结果不一致。此外,它们在参考基因组的背景下不提供单核苷酸多态性(SNP),这使得它们不适合全基因组关联研究。在这里,我们介绍kir-mapper,这是一个用于从短读长测序分析KIR基因的工具包,重点是在hg38参考基因组的背景下检测KIR等位基因、拷贝数变异以及SNP和插入缺失(InDels)。kir-mapper可用于全基因组测序(WGS)、全外显子组测序(WES)以及基于探针捕获方法后生成的测序数据。它提出了对基因内部和基因之间的SNP和InDels进行定相的策略,减少了其他方法报告的模糊性数量。我们已将kir-mapper和其他工具应用于来自全球样本的各种来源(WGS、WES)的数据并比较了结果。使用长读长数据作为真值集,我们发现WGS kir-mapper分析比PING和T1K提供了更准确的基因型调用。对于WES,kir-mapper在某些基因(特别是高度多态的基因,如KIR3DL3和KIR3DL2)上比T1K提供了更准确的基因型调用。这种比较突出表明,必须根据可用数据类型和目标基因来考虑方法的选择。kir-mapper可在GitHub仓库(https://github.com/erickcastelli/kir-mapper/)获取。