Suppr超能文献

模拟抗逆转录病毒疗法对坦桑尼亚艾滋病毒及相关肾脏疾病的影响。

Modeling the impact of antiretroviral therapy on HIV and related kidney diseases in Tanzania.

作者信息

Mchwampaka Janeth Pancras, Amadi Miracle, Mbare Nyimvua Shaban

机构信息

Department of mathematics, University of Dar es Salaam, Dar es Salaam, Tanzania.

LUT School of Engineering Sciences, Lappeenranta-Lahti University of Technology (LUT), Yliopistonkatu 34, Lappeenranta, Finland.

出版信息

Sci Rep. 2025 Mar 17;15(1):9094. doi: 10.1038/s41598-025-94114-x.

Abstract

This work presents a mathematical model for the dynamics of HIV-related kidney diseases. The study examines two cases, considering the effects of the absence of treatment and the effects of Highly Active Antiretroviral Therapy (HAART) on different infection groups. Studying these cases is important because many developing countries implement HAART late, and not all HIV-infected individuals receive this therapy. Kidney diseases in HIV individuals are modeled as arising from both HIV infection itself and the use of nephrotoxic drugs. In the analysis of the mathematical model, it is shown that the state variables of the model are non-negative and bounded. Furthermore, we derived a formula for control reproduction number [Formula: see text] which was used to compare the cases considered. The sensitivity analysis of the model reveals that the effect of HAART in reducing the progression from HIV to HIV-related kidney diseases is more significant compared to other effects of HAART on disease dynamics, which is also confirmed through numerical simulations. The Markov Chain Monte Carlo (MCMC) method was used to estimate parameters and evaluate the model using real data of the HIV population from Tanzania from 1990 to 2022. Numerical simulations demonstrated that while HAART reduces HIV progression to the AIDS stage, the population of individuals with HIV-related kidney diseases is increasing and is projected to continue increasing. Additionally, the results show that improving the effectiveness of HAART by 90% in preventing the progression from HIV to HIV-related kidney diseases can significantly decrease the prevalence of HIV-related kidney diseases. This study addresses a gap in understanding how population-level HAART availability influences the dynamics of HIV-related kidney disease, particularly in settings with delayed or inconsistent treatment access. By analyzing disease progression under these conditions, our findings provide insights that can inform public health strategies for improving HIV care in resource-limited settings and other contexts where access disparities persist. In addition, the work investigated scenarios related to data quality in which the model parameters can be well identified, which can serve as a guide for obtaining informative real data.

摘要

这项工作提出了一个关于HIV相关肾脏疾病动态变化的数学模型。该研究考察了两种情况,考虑了未进行治疗的影响以及高效抗逆转录病毒疗法(HAART)对不同感染群体的影响。研究这些情况很重要,因为许多发展中国家实施HAART较晚,而且并非所有HIV感染者都能接受这种治疗。HIV感染者的肾脏疾病被建模为既源于HIV感染本身,也源于肾毒性药物的使用。在对数学模型的分析中,结果表明该模型的状态变量是非负且有界的。此外,我们推导了控制繁殖数的公式[公式:见正文],用于比较所考虑的情况。模型的敏感性分析表明,与HAART对疾病动态的其他影响相比,HAART在降低从HIV进展为HIV相关肾脏疾病方面的作用更为显著,这也通过数值模拟得到了证实。使用马尔可夫链蒙特卡罗(MCMC)方法来估计参数,并利用1990年至2022年坦桑尼亚HIV人群的真实数据对模型进行评估。数值模拟表明,虽然HAART减少了HIV进展到艾滋病阶段,但患有HIV相关肾脏疾病的人群数量正在增加,并且预计还会继续增加。此外,结果表明,将HAART在预防从HIV进展为HIV相关肾脏疾病方面的有效性提高90%,可以显著降低HIV相关肾脏疾病的患病率。本研究填补了在理解人群层面HAART的可及性如何影响HIV相关肾脏疾病动态变化方面的空白,特别是在治疗获取延迟或不一致的环境中。通过分析这些条件下的疾病进展情况,我们的研究结果提供了一些见解,可为在资源有限的环境和其他存在获取差异的背景下改善HIV护理的公共卫生策略提供参考。此外,该工作还研究了与数据质量相关的场景,在这些场景中模型参数可以得到很好的识别,这可以作为获取信息丰富的真实数据的指南。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/92b0/11914296/9d3db58eade2/41598_2025_94114_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验