Chen Ruibing, Chen Xianghui, Chen Yu, Yang Jindong, Chen Wansheng, Zhou Yongjin J, Zhang Lei
Department of Pharmaceutical Botany, School of Pharmacy, Naval Medical University, Shanghai, China.
Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.
Nat Chem Biol. 2025 Mar 17. doi: 10.1038/s41589-025-01861-z.
Reconstructing the biosynthesis of complex natural products such as lignans in yeast is challenging and can result in metabolic promiscuity, affecting the biosynthetic efficiency. Here we divide the lignan biosynthetic pathway across a synthetic yeast consortium with obligated mutualism and use ferulic acid as a metabolic bridge. This cooperative system successfully overcomes the metabolic promiscuity and synthesizes the common precursor, coniferyl alcohol. Furthermore, combined with systematic engineering strategies, we achieve the de novo synthesis of key lignan skeletons, pinoresinol and lariciresinol, and verify the scalability of the consortium by synthesizing complex lignans, including antiviral lariciresinol diglucoside. These results provide a starting engineering platform for the heterologous synthesis of lignans. In particular, the study illustrates that the yeast consortium with obligate mutualism is a promising strategy that mimics the metabolic division of labor among multiple plant cells, thereby improving the biosynthesis of long pathways and complex natural products.
在酵母中重建复杂天然产物(如木脂素)的生物合成具有挑战性,并且可能导致代谢混乱,影响生物合成效率。在此,我们将木脂素生物合成途径划分到一个具有专性互利共生关系的合成酵母菌群中,并使用阿魏酸作为代谢桥梁。这个合作系统成功克服了代谢混乱,合成了共同前体松柏醇。此外,结合系统工程策略,我们实现了关键木脂素骨架——松脂醇和落叶松脂醇的从头合成,并通过合成包括抗病毒的落叶松脂醇二葡萄糖苷在内的复杂木脂素来验证该菌群的可扩展性。这些结果为木脂素的异源合成提供了一个起始工程平台。特别地,该研究表明具有专性互利共生关系的酵母菌群是一种很有前景的策略,它模拟了多个植物细胞之间的代谢分工,从而提高了长途径和复杂天然产物的生物合成。