Suppr超能文献

复发性临床事件预测模型性能评估指南

Guide to evaluating performance of prediction models for recurrent clinical events.

作者信息

Bonnett Laura J, Spain Thomas, Hunt Alexandra, Hutton Jane L, Watson Victoria, Marson Anthony G, Blakey John

机构信息

Department of Health Data Science, University of Liverpool, Liverpool, L69 3GL, UK.

Department of Statistics, University of Warwick, Coventry, CV4 7AL, UK.

出版信息

Diagn Progn Res. 2025 Mar 17;9(1):6. doi: 10.1186/s41512-025-00187-7.

Abstract

BACKGROUND

Many chronic conditions, such as epilepsy and asthma, are typified by recurrent events-repeated acute deterioration events of a similar type. Statistical models for these conditions often focus on evaluating the time to the first event. They therefore do not make use of data available on all events. Statistical models for recurrent events exist, but it is not clear how best to evaluate their performance. We compare the relative performance of statistical models for analysing recurrent events for epilepsy and asthma.

METHODS

We studied two clinical exemplars of common and infrequent events: asthma exacerbations using the Optimum Patient Clinical Research Database, and epileptic seizures using data from the Standard versus New Antiepileptic Drug Study. In both cases, count-based models (negative binomial and zero-inflated negative binomial) and variants on the Cox model (Andersen-Gill and Prentice, Williams and Peterson) were used to assess the risk of recurrence (of exacerbations or seizures respectively). Performance of models was evaluated via numerical (root mean square prediction error, mean absolute prediction error, and prediction bias) and graphical (calibration plots and Bland-Altman plots) approaches.

RESULTS

The performance of the prediction models for asthma and epilepsy recurrent events could be evaluated via the selected numerical and graphical measures. For both the asthma and epilepsy exemplars, the Prentice, Williams and Peterson model showed the closest agreement between predicted and observed outcomes.

CONCLUSION

Inappropriate models can lead to incorrect conclusions which disadvantage patients. Therefore, prediction models for outcomes associated with chronic conditions should include all repeated events. Such models can be evaluated via the promoted numerical and graphical approaches alongside modified calibration measures.

摘要

背景

许多慢性病,如癫痫和哮喘,其特点是反复出现事件——类似类型的反复急性恶化事件。针对这些疾病的统计模型通常侧重于评估首次事件发生的时间。因此,它们没有利用所有事件的可用数据。存在用于反复事件的统计模型,但尚不清楚如何最好地评估其性能。我们比较用于分析癫痫和哮喘反复事件的统计模型的相对性能。

方法

我们研究了常见和不常见事件的两个临床实例:使用最佳患者临床研究数据库的哮喘发作,以及使用标准与新型抗癫痫药物研究数据的癫痫发作。在这两种情况下,基于计数的模型(负二项式和零膨胀负二项式)以及Cox模型的变体(Andersen-Gill和Prentice、Williams和Peterson)用于评估复发风险(分别为发作或癫痫发作的复发风险)。通过数值方法(均方根预测误差、平均绝对预测误差和预测偏差)和图形方法(校准图和Bland-Altman图)评估模型的性能。

结果

哮喘和癫痫反复事件预测模型的性能可以通过选定的数值和图形方法进行评估。对于哮喘和癫痫实例,Prentice、Williams和Peterson模型在预测结果和观察结果之间显示出最接近的一致性。

结论

不合适的模型可能导致错误的结论,对患者不利。因此,与慢性病相关的结果预测模型应包括所有重复事件。此类模型可以通过推广的数值和图形方法以及改进的校准措施进行评估。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b32/11912649/f4d31af15b10/41512_2025_187_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验