Suppr超能文献

以现代早期药物发现迎接变革与挑战。

Embracing the changes and challenges with modern early drug discovery.

作者信息

Kumar Vinay, Roy Kunal

机构信息

Drug Theoretics and Cheminformatics Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India.

出版信息

Expert Opin Drug Discov. 2025 Apr;20(4):419-431. doi: 10.1080/17460441.2025.2481259. Epub 2025 Mar 19.

Abstract

INTRODUCTION

The landscape of early drug discovery is rapidly evolving, fueled by significant advancements in artificial intelligence (AI) and machine learning (ML), which are transforming the way drugs are discovered. As traditional drug discovery faces growing challenges in terms of time, cost, and efficacy, there is a pressing need to integrate these emerging technologies to enhance the discovery process.

AREAS COVERED

In this perspective, the authors explore the role of AI and ML in modern early drug discovery and discuss their application in drug target identification, compound screening, and biomarker discovery. This article is based on a thorough literature search using the PubMed database to identify relevant studies that highlight the use of AI/ML models in computational chemistry, systems biology, and data-driven approaches to drug development. Emphasis is placed on how these technologies address key challenges such as data integration, predictive performance, and cost-efficiency in the drug discovery pipeline.

EXPERT OPINION

AI and ML have the potential to revolutionize early drug discovery by improving the accuracy and speed of identifying viable drug candidates. However, successful integration of these technologies requires overcoming challenges related to data quality, model interpretability, and the need for interdisciplinary collaboration.

摘要

引言

在人工智能(AI)和机器学习(ML)取得重大进展的推动下,早期药物发现领域正在迅速发展,这些技术正在改变药物发现的方式。随着传统药物发现在时间、成本和疗效方面面临越来越多的挑战,迫切需要整合这些新兴技术以加强发现过程。

涵盖领域

从这个角度来看,作者探讨了AI和ML在现代早期药物发现中的作用,并讨论了它们在药物靶点识别、化合物筛选和生物标志物发现中的应用。本文基于使用PubMed数据库进行的全面文献检索,以识别突出AI/ML模型在计算化学、系统生物学和数据驱动的药物开发方法中的应用的相关研究。重点在于这些技术如何应对药物发现流程中的关键挑战,如数据整合、预测性能和成本效益。

专家观点

AI和ML有潜力通过提高识别可行药物候选物的准确性和速度来彻底改变早期药物发现。然而,成功整合这些技术需要克服与数据质量、模型可解释性以及跨学科合作需求相关的挑战。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验