Suppr超能文献

基于机器学习的个性化外周动脉支架扭转性能快速预测

Machine Learning-Based Rapid Prediction of Torsional Performance of Personalized Peripheral Artery Stent.

作者信息

Shen Xiang, Chen Jiahao, He Zewen, Xu Yue, Liu Qiang, Liang Hongyu, Yan Hengfeng

机构信息

Jiangsu University, Zhenjiang, China.

Changzhou INNO Machining Co. Ltd., Changzhou, China.

出版信息

Int J Numer Method Biomed Eng. 2025 Mar;41(3):e70029. doi: 10.1002/cnm.70029.

Abstract

The complex mechanical environment of peripheral arteries makes stents with poor torsional performance more prone to fracture, and stent fracture is considered a precursor to in-stent restenosis (ISR). Therefore, studying the torsional performance of stents is crucial. However, while the finite element method (FEM) can accurately simulate the torsional behavior of stents, its time-consuming nature makes it difficult to meet the rapid design requirements for individualized stents. Thus, integrating efficient machine learning (ML) models into the stent design process may be a viable approach. In this study, a machine learning-based rapid prediction method was established to achieve the rapid prediction of torsional performance of personalized peripheral artery stents. A dataset containing 200 different stent designs was generated using Latin Hypercube Sampling (LHS) and FEM. The dataset was divided into a training set (160 samples) and a test set (40 samples). Based on four input variables-the length of strut ring (LS), the width of strut (WS), the width of link (WL), and the thickness of stent (T)-the predictive performance of polynomial regression (PR), random forest regression (RFR), and support vector regression (SVR) for the twist metric (TM) was compared. To simulate the real-world application of ML models, after training and testing the ML models, the entire dataset (combining the training and test sets) was used for re-learning while keeping the control parameters unchanged. A validation set (10 samples) was generated through sampling and FEM, and the re-learned ML models were used to predict and validate their performance. By comprehensively comparing the predictive performance of the ML models on the training set, test set, and validation set, the algorithm performance ranked as follows: PR>SVR>RFR. The PR model achieved a mean absolute error (MAE) of (training set = 0.02847; test set = 0.03083; validation set = 0.04311) and a coefficient of determination (R) of (training set = 0.95148; test set = 0.97822; validation set = 0.94397). This method can effectively shorten the design cycle of stents and meet the need for personalized stent rapid design and choice. In addition, this method can also be extended to predict other mechanical properties of the stent and can be used in stent multi-objective design optimization.

摘要

外周动脉复杂的力学环境使得扭转性能较差的支架更容易发生断裂,而支架断裂被认为是支架内再狭窄(ISR)的先兆。因此,研究支架的扭转性能至关重要。然而,虽然有限元方法(FEM)能够准确模拟支架的扭转行为,但其耗时的特性使其难以满足个性化支架快速设计的要求。因此,将高效的机器学习(ML)模型整合到支架设计过程中可能是一种可行的方法。在本研究中,建立了一种基于机器学习的快速预测方法,以实现个性化外周动脉支架扭转性能的快速预测。使用拉丁超立方抽样(LHS)和有限元方法生成了一个包含两百种不同支架设计的数据集。该数据集被分为训练集(160个样本)和测试集(40个样本)。基于四个输入变量——支柱环长度(LS)、支柱宽度(WS)、连接宽度(WL)和支架厚度(T)——比较了多项式回归(PR)、随机森林回归(RFR)和支持向量回归(SVR)对扭转指标(TM)的预测性能。为了模拟机器学习模型在实际中的应用,在对机器学习模型进行训练和测试后,在保持控制参数不变的情况下,使用整个数据集(结合训练集和测试集)进行重新学习。通过抽样和有限元方法生成了一个验证集(10个样本),并使用重新学习后的机器学习模型来预测和验证其性能。通过综合比较机器学习模型在训练集、测试集和验证集上的预测性能,算法性能排名如下:PR > SVR > RFR。PR模型的平均绝对误差(MAE)为(训练集 = 0.02847;测试集 = 0.03083;验证集 = 0.04311),决定系数(R)为(训练集 = 0.95148;测试集 = 0.97822;验证集 = 0.94397)。该方法能够有效缩短支架的设计周期,满足个性化支架快速设计与选择的需求。此外,该方法还可扩展用于预测支架的其他力学性能,并可应用于支架多目标设计优化。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验