Kurowska Marzena, Janiak Agnieszka, Sitko Krzysztof, Potocka Izabela, Gajecka Monika, Sybilska Ewa, Płociniczak Tomasz, Lip Sabina, Rynkiewicz Magdalena, Wiecha Klaudia, Nawrot Małgorzata, Daszkowska-Golec Agata, Szarejko Iwona
Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland.
J Appl Genet. 2025 Mar 18. doi: 10.1007/s13353-025-00956-6.
Drought stress can damage crop growth and lead to a decline in yield, thereby affecting food security, especially in regions vulnerable to climate change. SNAC1 (stress-responsive NAC1), the NAC transcription factor family member, plays a crucial role in stomatal movement regulation. Effective regulation of stomatal movement is essential for protecting plants from water loss during adverse conditions. Our hypothesis revolves around altering HvSNAC1 activity by introducing a point mutation in its encoding gene, thereby influencing stomatal dynamics in barley. Two TILLING mutants, each harboring missense mutations in the NAC domain, exhibited higher stomatal density after drought stress compared to the parent cultivar 'Sebastian'. These mutants also demonstrated distinct patterns of ABA-induced stomatal movement compared to the wild-type (WT). To delve deeper, we conducted a comprehensive analysis of the transcriptomes of these mutants and the parent cultivar 'Sebastian' under both optimal watering conditions and 10 days of drought stress treatment. We identified differentially expressed genes (DEGs) between the mutants and WT plants under control and drought conditions. Furthermore, we pinpointed DEGs specifically expressed in both mutants under drought conditions. Our experiments revealed that the cis-regulatory motif CACG, previously identified in Arabidopsis and rice, is recognized by HvSNAC1 in vitro. Enrichment analysis led to the identification of the cell wall organization category and potential target genes, such as HvEXPA8 (expansin 8), HvXTH (xyloglucan endotransglucosylase/hydrolase), and HvPAE9 (pectin acetylesterase 9), suggesting their regulation by HvSNAC1. These findings suggest that HvSNAC1 may play a role in regulating genes associated with stomatal density, size and reopening.
干旱胁迫会损害作物生长并导致产量下降,从而影响粮食安全,特别是在易受气候变化影响的地区。SNAC1(胁迫响应NAC1)是NAC转录因子家族成员,在气孔运动调节中起关键作用。有效调节气孔运动对于保护植物在不利条件下避免水分流失至关重要。我们的假设围绕着通过在其编码基因中引入点突变来改变HvSNAC1的活性,从而影响大麦的气孔动态。两个TILLING突变体,每个在NAC结构域中都含有错义突变,与亲本品种“塞巴斯蒂安”相比,在干旱胁迫后表现出更高的气孔密度。与野生型(WT)相比,这些突变体在脱落酸诱导的气孔运动方面也表现出不同的模式。为了更深入地研究,我们对这些突变体和亲本品种“塞巴斯蒂安”在最佳浇水条件和10天干旱胁迫处理下的转录组进行了全面分析。我们确定了突变体和WT植物在对照和干旱条件下的差异表达基因(DEG)。此外,我们还确定了在干旱条件下两个突变体中特异性表达的DEG。我们的实验表明,先前在拟南芥和水稻中鉴定出的顺式调控基序CACG在体外被HvSNAC1识别。富集分析导致鉴定出细胞壁组织类别和潜在的靶基因,如HvEXPA8(扩展蛋白8)、HvXTH(木葡聚糖内转糖基酶/水解酶)和HvPAE9(果胶乙酰酯酶9),表明它们受HvSNAC1调控。这些发现表明,HvSNAC1可能在调节与气孔密度、大小和重新开放相关的基因中发挥作用。