Luo Xu, Zhang Xinpeng, Su Dongqing, Li Honghao, Zou Min, Xiong Yuqiang, Yang Lei
College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China.
Interdiscip Sci. 2025 Mar 18. doi: 10.1007/s12539-025-00699-2.
As a common malignancy of the lower respiratory tract, non-small cell lung cancer (NSCLC) represents a major oncological challenge globally, characterized by high incidence and mortality rates. Recent research highlights the critical involvement of somatic mutations in the onset and development of NSCLC. Stratification of NSCLC patients based on somatic mutation data could facilitate the identification of patients likely to respond to personalized therapeutic strategies. However, stratification of NSCLC patients using somatic mutation data is challenging due to the sparseness of this data. In this study, based on sparse somatic mutation data from 4581 NSCLC patients from the Memorial Sloan Kettering Cancer Center (MSKCC) database, we systematically evaluate the metabolic pathway activity in NSCLC patients through the application of network propagation algorithm and computational biology algorithms. Based on these metabolic pathways associated with prognosis, as recognized through univariate Cox regression analysis, NSCLC patients are stratified using the deep clustering algorithm to explore the optimal classification strategy, thereby establishing biologically meaningful metabolic subtypes of NSCLC patients. The precise NSCLC metabolic subtypes obtained from the network propagation algorithm and deep clustering algorithm are systematically evaluated and validated for survival benefits of immunotherapy. Our research marks progress towards developing a universal approach for classifying NSCLC patients based solely on somatic mutation profiles, employing deep clustering algorithm. The implementation of our research will help to deepen the analysis of NSCLC patients' metabolic subtypes from the perspective of tumor microenvironment, providing a strong basis for the formulation of more precise personalized treatment plans.
作为下呼吸道常见的恶性肿瘤,非小细胞肺癌(NSCLC)是全球主要的肿瘤学挑战,其发病率和死亡率都很高。最近的研究强调了体细胞突变在NSCLC发病和发展中的关键作用。根据体细胞突变数据对NSCLC患者进行分层有助于识别可能对个性化治疗策略有反应的患者。然而,由于该数据的稀疏性,使用体细胞突变数据对NSCLC患者进行分层具有挑战性。在本研究中,基于纪念斯隆凯特琳癌症中心(MSKCC)数据库中4581例NSCLC患者的稀疏体细胞突变数据,我们通过应用网络传播算法和计算生物学算法系统地评估了NSCLC患者的代谢途径活性。基于单变量Cox回归分析确定的与预后相关的这些代谢途径,使用深度聚类算法对NSCLC患者进行分层,以探索最佳分类策略,从而建立具有生物学意义的NSCLC患者代谢亚型。从网络传播算法和深度聚类算法获得的精确NSCLC代谢亚型经过系统评估,并验证了免疫治疗的生存获益。我们的研究标志着朝着仅基于体细胞突变谱、采用深度聚类算法对NSCLC患者进行分类的通用方法取得了进展。我们研究的实施将有助于从肿瘤微环境的角度加深对NSCLC患者代谢亚型的分析,为制定更精确的个性化治疗方案提供有力依据。