文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Disrupted minor intron splicing activates reductive carboxylation-mediated lipogenesis to drive metabolic dysfunction-associated steatotic liver disease progression.

作者信息

Fu Yinkun, Peng Xin, Song Hongyong, Li Xiaoyun, Zhi Yang, Tang Jieting, Liu Yifan, Chen Ding, Li Wenyan, Zhang Jing, Ma Jing, He Ming, Mao Yimin, Zhao Xu-Yun

机构信息

Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education and.

Institute for Translational Medicine on Cell Fate and Disease, Shanghai Ninth People's Hospital, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.

出版信息

J Clin Invest. 2025 Mar 18;135(10). doi: 10.1172/JCI186478. eCollection 2025 May 15.


DOI:10.1172/JCI186478
PMID:40100939
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12077890/
Abstract

Aberrant RNA splicing is tightly linked to diseases, including metabolic dysfunction-associated steatotic liver disease (MASLD). In this study, we revealed that minor intron splicing, a unique and conserved RNA processing event, is largely disrupted upon the progression of metabolic dysfunction-associated steatohepatitis (MASH) in mice and humans. We demonstrated that deficiency of minor intron splicing in the liver induced MASH transition upon obesity-induced insulin resistance and LXR activation. Mechanistically, inactivation of minor intron splicing led to minor intron retention of Insig1 and Insig2, resulting in premature termination of translation, which drove proteolytic activation of SREBP1c. This mechanism was conserved in patients with MASH. Notably, disrupted minor intron splicing activated glutamine reductive metabolism for de novo lipogenesis through induction of Idh1, which caused accumulation of ammonia in the liver, thereby initiating hepatic fibrosis upon LXR activation. Ammonia clearance or IDH1 inhibition blocked hepatic fibrogenesis and mitigated MASH progression. More importantly, overexpression of Zrsr1 restored minor intron retention and ameliorated the development of MASH, indicating that dysfunctional minor intron splicing is an emerging pathogenic mechanism that drives MASH progression. Additionally, our results suggest that reductive carboxylation flux triggered by minor intron retention in hepatocytes serves as a crucial checkpoint and potential target for MASH therapy.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3480/12077890/ae3504d2692b/jci-135-186478-g221.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3480/12077890/825255c70328/jci-135-186478-g219.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3480/12077890/adbde923c768/jci-135-186478-g222.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3480/12077890/47a4eea7fd28/jci-135-186478-g223.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3480/12077890/7fd10cb8ec79/jci-135-186478-g224.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3480/12077890/2caca62f0143/jci-135-186478-g225.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3480/12077890/af26ad17e97f/jci-135-186478-g226.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3480/12077890/5aa1e93a10be/jci-135-186478-g227.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3480/12077890/9349f5b859b5/jci-135-186478-g228.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3480/12077890/81260555e285/jci-135-186478-g229.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3480/12077890/2d59e35b4403/jci-135-186478-g220.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3480/12077890/ae3504d2692b/jci-135-186478-g221.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3480/12077890/825255c70328/jci-135-186478-g219.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3480/12077890/adbde923c768/jci-135-186478-g222.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3480/12077890/47a4eea7fd28/jci-135-186478-g223.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3480/12077890/7fd10cb8ec79/jci-135-186478-g224.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3480/12077890/2caca62f0143/jci-135-186478-g225.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3480/12077890/af26ad17e97f/jci-135-186478-g226.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3480/12077890/5aa1e93a10be/jci-135-186478-g227.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3480/12077890/9349f5b859b5/jci-135-186478-g228.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3480/12077890/81260555e285/jci-135-186478-g229.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3480/12077890/2d59e35b4403/jci-135-186478-g220.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3480/12077890/ae3504d2692b/jci-135-186478-g221.jpg

相似文献

[1]
Disrupted minor intron splicing activates reductive carboxylation-mediated lipogenesis to drive metabolic dysfunction-associated steatotic liver disease progression.

J Clin Invest. 2025-3-18

[2]
The Role of RNA Splicing in Liver Function and Disease: A Focus on Metabolic Dysfunction-Associated Steatotic Liver Disease.

Genes (Basel). 2024-9-8

[3]
Cinnabarinic acid protects against metabolic dysfunction-associated steatohepatitis by activating aryl hydrocarbon receptor-dependent AMPK signaling.

Am J Physiol Gastrointest Liver Physiol. 2025-4-1

[4]
Multi-modal analysis of human hepatic stellate cells identifies novel therapeutic targets for metabolic dysfunction-associated steatotic liver disease.

J Hepatol. 2025-5

[5]
ACMSD inhibition corrects fibrosis, inflammation, and DNA damage in MASLD/MASH.

J Hepatol. 2025-2

[6]
Increased hepatic putrescine levels as a new potential factor related to the progression of metabolic dysfunction-associated steatotic liver disease.

J Pathol. 2024-9

[7]
miR-33 deletion in hepatocytes attenuates MASLD-MASH-HCC progression.

JCI Insight. 2024-8-27

[8]
Amino acid is a major carbon source for hepatic lipogenesis.

Cell Metab. 2024-11-5

[9]
Aging-Associated Liver Sinusoidal Endothelial Cells Dysfunction Aggravates the Progression of Metabolic Dysfunction-Associated Steatotic Liver Disease.

Aging Cell. 2025-5

[10]
The lipopolysaccharide-TLR4 axis regulates hepatic glutaminase 1 expression promoting liver ammonia build-up as steatotic liver disease progresses to steatohepatitis.

Metabolism. 2024-9

本文引用的文献

[1]
Amino acid is a major carbon source for hepatic lipogenesis.

Cell Metab. 2024-11-5

[2]
Alternative splicing: a bridge connecting NAFLD and HCC.

Trends Mol Med. 2023-10

[3]
Pre-mRNA splicing and its cotranscriptional connections.

Trends Genet. 2023-9

[4]
SLC27A4-mediated selective uptake of mono-unsaturated fatty acids promotes ferroptosis defense in hepatocellular carcinoma.

Free Radic Biol Med. 2023-5-20

[5]
Various AAV Serotypes and Their Applications in Gene Therapy: An Overview.

Cells. 2023-3-1

[6]
Development of LXR inverse agonists to treat MAFLD, NASH, and other metabolic diseases.

Front Med (Lausanne). 2023-2-2

[7]
RNA splicing dysregulation and the hallmarks of cancer.

Nat Rev Cancer. 2023-3

[8]
Zrsr2 Is Essential for the Embryonic Development and Splicing of Minor Introns in RNA and Protein Processing Genes in Zebrafish.

Int J Mol Sci. 2022-9-14

[9]
The prevalence and incidence of NAFLD worldwide: a systematic review and meta-analysis.

Lancet Gastroenterol Hepatol. 2022-9

[10]
Dysregulated minor intron splicing in cancer.

Cancer Sci. 2022-9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索