Suppr超能文献

前体 mRNA 剪接及其共转录连接。

Pre-mRNA splicing and its cotranscriptional connections.

机构信息

Department of Biochemistry and Molecular Genetics, RNA Bioscience Initiative, University of Colorado School of Medicine, PO Box 6511, Aurora, CO 80045, USA.

Department of Biochemistry and Molecular Genetics, RNA Bioscience Initiative, University of Colorado School of Medicine, PO Box 6511, Aurora, CO 80045, USA.

出版信息

Trends Genet. 2023 Sep;39(9):672-685. doi: 10.1016/j.tig.2023.04.008. Epub 2023 May 24.

Abstract

Transcription of eukaryotic genes by RNA polymerase II (Pol II) yields RNA precursors containing introns that must be spliced out and the flanking exons ligated together. Splicing is catalyzed by a dynamic ribonucleoprotein complex called the spliceosome. Recent evidence has shown that a large fraction of splicing occurs cotranscriptionally as the RNA chain is extruded from Pol II at speeds of up to 5 kb/minute. Splicing is more efficient when it is tethered to the transcription elongation complex, and this linkage permits functional coupling of splicing with transcription. We discuss recent progress that has uncovered a network of connections that link splicing to transcript elongation and other cotranscriptional RNA processing events.

摘要

真核基因由 RNA 聚合酶 II(Pol II)转录产生含有内含子的 RNA 前体,这些内含子必须被剪接掉,侧翼的外显子连接在一起。剪接是由一种称为剪接体的动态核糖核蛋白复合物催化的。最近的证据表明,当 RNA 链以高达 5kb/min 的速度从 Pol II 中挤出时,很大一部分剪接是共转录的。当剪接与转录延伸复合物连接时,剪接效率更高,这种连接允许剪接与转录的功能偶联。我们讨论了最近的进展,这些进展揭示了一个连接剪接与转录延伸和其他共转录 RNA 加工事件的连接网络。

相似文献

1
Pre-mRNA splicing and its cotranscriptional connections.
Trends Genet. 2023 Sep;39(9):672-685. doi: 10.1016/j.tig.2023.04.008. Epub 2023 May 24.
2
The in vivo kinetics of RNA polymerase II elongation during co-transcriptional splicing.
PLoS Biol. 2011 Jan 11;9(1):e1000573. doi: 10.1371/journal.pbio.1000573.
3
Long-read sequencing of nascent RNA reveals coupling among RNA processing events.
Genome Res. 2018 Jul;28(7):1008-1019. doi: 10.1101/gr.232025.117. Epub 2018 Jun 14.
4
Cotranscriptional splicing efficiency differs dramatically between Drosophila and mouse.
RNA. 2012 Dec;18(12):2174-86. doi: 10.1261/rna.034090.112. Epub 2012 Oct 24.
5
Structure of a transcribing RNA polymerase II-U1 snRNP complex.
Science. 2021 Jan 15;371(6526):305-309. doi: 10.1126/science.abf1870.
6
The histone variant H2A.Z promotes efficient cotranscriptional splicing in .
Genes Dev. 2017 Apr 1;31(7):702-717. doi: 10.1101/gad.295188.116.
8
Cotranscriptional coupling of splicing factor recruitment and precursor messenger RNA splicing in mammalian cells.
Nat Struct Mol Biol. 2006 Sep;13(9):815-22. doi: 10.1038/nsmb1135. Epub 2006 Aug 20.
9
Cotranscriptional spliceosome assembly and splicing are independent of the Prp40p WW domain.
RNA. 2011 Dec;17(12):2119-29. doi: 10.1261/rna.02646811. Epub 2011 Oct 21.

引用本文的文献

2
The RNA revolution in medicine: from gene regulation to clinical therapeutics.
Anim Cells Syst (Seoul). 2025 Aug 25;29(1):523-543. doi: 10.1080/19768354.2025.2548253. eCollection 2025.
4
Pervasive noise in human splice site selection.
bioRxiv. 2025 Jul 20:2025.07.16.665169. doi: 10.1101/2025.07.16.665169.
5
Transcription termination promotes splicing efficiency and fidelity in a compact genome.
Proc Natl Acad Sci U S A. 2025 Aug 12;122(32):e2507187122. doi: 10.1073/pnas.2507187122. Epub 2025 Aug 5.
6
TET dioxygenases localize at splicing speckles and promote RNA splicing.
Nucleus. 2025 Dec;16(1):2536902. doi: 10.1080/19491034.2025.2536902. Epub 2025 Jul 27.
7
Plans within plans: post-transcriptional regulation governs macrophage responses.
Trends Immunol. 2025 Aug;46(8):573-585. doi: 10.1016/j.it.2025.06.001. Epub 2025 Jun 30.
8
Geometrically encoded positioning of introns, intergenic segments, and exons in the human genome.
bioRxiv. 2025 May 29:2025.05.29.656862. doi: 10.1101/2025.05.29.656862.
10
Alternative splicing: hallmark and therapeutic opportunity in metabolic liver disease.
Gastroenterol Rep (Oxf). 2025 May 26;13:goaf044. doi: 10.1093/gastro/goaf044. eCollection 2025.

本文引用的文献

1
A direct interaction between CPF and RNA Pol II links RNA 3' end processing to transcription.
Mol Cell. 2023 Dec 21;83(24):4461-4478.e13. doi: 10.1016/j.molcel.2023.11.004. Epub 2023 Nov 28.
2
U1 snRNP increases RNA Pol II elongation rate to enable synthesis of long genes.
Mol Cell. 2023 Apr 20;83(8):1264-1279.e10. doi: 10.1016/j.molcel.2023.03.002. Epub 2023 Mar 24.
3
PTBP1-activated co-transcriptional splicing controls epigenetic status of pluripotent stem cells.
Mol Cell. 2023 Jan 19;83(2):203-218.e9. doi: 10.1016/j.molcel.2022.12.014. Epub 2023 Jan 9.
4
Profiling lariat intermediates reveals genetic determinants of early and late co-transcriptional splicing.
Mol Cell. 2022 Dec 15;82(24):4681-4699.e8. doi: 10.1016/j.molcel.2022.11.004. Epub 2022 Nov 25.
5
Nucleotide-level linkage of transcriptional elongation and polyadenylation.
Elife. 2022 Nov 24;11:e83153. doi: 10.7554/eLife.83153.
6
Probing the dynamic RNA structurome and its functions.
Nat Rev Genet. 2023 Mar;24(3):178-196. doi: 10.1038/s41576-022-00546-w. Epub 2022 Nov 8.
7
The pausing zone and control of RNA polymerase II elongation by Spt5: Implications for the pause-release model.
Mol Cell. 2022 Oct 6;82(19):3632-3645.e4. doi: 10.1016/j.molcel.2022.09.001.
8
Multi-step recognition of potential 5' splice sites by the U1 snRNP.
Elife. 2022 Aug 12;11:e70534. doi: 10.7554/eLife.70534.
9
Transcript-specific determinants of pre-mRNA splicing revealed through in vivo kinetic analyses of the 1 and 2 chemical steps.
Mol Cell. 2022 Aug 18;82(16):2967-2981.e6. doi: 10.1016/j.molcel.2022.06.020. Epub 2022 Jul 12.
10
Structural advances in transcription elongation.
Curr Opin Struct Biol. 2022 Aug;75:102422. doi: 10.1016/j.sbi.2022.102422. Epub 2022 Jul 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验