Chen Ting, Jiang Xue, Qiang Sheng, Pang Jiaxing, Aissa Fatima Ait, Li Wei, Xiong Chuanyin, Ni Yonghao, Tian Xiuzhi
College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China.
College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China.
Int J Biol Macromol. 2025 May;307(Pt 3):142060. doi: 10.1016/j.ijbiomac.2025.142060. Epub 2025 Mar 17.
Moisture-electricity generation (MEG) offers a promising strategy for sustainable energy conversion by harvesting ambient moisture to generate electricity. However, cellulose-based MEGs (CMEGs) are limited by inefficient proton migration and disordered moisture transport. To address these issues, we propose a dual-gradient heterogeneous bilayer cellulose-based membrane (CA@CF/CANPF) for Bi-CMEGs. The pore size gradient regulates water adsorption and diffusion, effectively guiding directional transport within the membrane, while the gradient of oxygen-containing functional groups improves hydrophilicity and facilitates ion exchange, accelerating proton migration. This Bi-CMEGs design achieves an open-circuit voltage of approximately 665.2 mV, a short-circuit current of 11.2 μA/cm and an effective power density of 1.24 μW/cm, demonstrating excellent adaptability and stability across varied temperature and humidity conditions. Compared to recent advancements in CMEGs, the dual-gradient structure significantly enhances moisture transport and proton migration, overcoming key efficiency and scalability limitations. Notably, an amplified voltage of approximately 2516.7 mV is achieved by integrating the Bi-CMEG units in series, which is sufficient to directly power an LED for over 6 h under typical laboratory conditions. This work emphasizes the dual-gradient structure of Bi-CMEG, providing an efficient and unique design concept for sustainable cellulose-based moisture-electricity generation devices.
通过收集环境湿度来发电,湿度发电(MEG)为可持续能源转换提供了一种很有前景的策略。然而,基于纤维素的湿度发电装置(CMEG)受到质子迁移效率低下和水分传输无序的限制。为了解决这些问题,我们提出了一种用于双CMEG的双梯度异质双层纤维素基膜(CA@CF/CANPF)。孔径梯度调节水的吸附和扩散,有效地引导膜内的定向传输,而含氧官能团的梯度提高了亲水性并促进离子交换,加速质子迁移。这种双CMEG设计实现了约665.2 mV的开路电压、11.2 μA/cm的短路电流和1.24 μW/cm的有效功率密度,在不同的温度和湿度条件下表现出优异的适应性和稳定性。与CMEG的最新进展相比,双梯度结构显著增强了水分传输和质子迁移,克服了关键的效率和可扩展性限制。值得注意的是,通过将双CMEG单元串联集成,实现了约2516.7 mV的放大电压,在典型实验室条件下足以直接为一个发光二极管供电超过6小时。这项工作强调了双CMEG的双梯度结构,为可持续的基于纤维素的湿度发电装置提供了一种高效且独特的设计理念。