Wang Lijie, Wu Wentao, Yang Jie, Nughays Razan, Zhou Yifan, Ugur Esma, Zhang Xi, Shao Bingyao, Wang Jian-Xin, Yin Jun, De Wolf Stefaan, Bakr Osman M, Mohammed Omar F
Advanced Membranes and Porous Materials Center (AMPM), Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
Key Laboratory of Material Physics, Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou, China.
Light Sci Appl. 2025 Mar 18;14(1):124. doi: 10.1038/s41377-025-01758-5.
In layered two-dimensional (2D) perovskites, the inorganic perovskite layers sandwiched between cation spacers create quantum well (QW) structures, showing large exciton binding energies that hinder the efficient dissociation of excitons into free carriers. This leads to poor carrier transport properties and low-performance light-conversion-based devices, and the direct understanding of the underlying physics, particularly concerning surface states, remains extremely difficult, if not impossible, due to the challenges in real-time accessibility. Here, we utilized four-dimensional scanning ultrafast electron microscopy (4D-SUEM), a highly sensitive technique for mapping surface carrier diffusion that diverges from those in the bulk and substantially affects material properties. We directly visualize photo-generated carrier transport over both spatial and temporal dimensions on the top surface of 2D perovskites with varying inorganic perovskite layer thicknesses (n = 1, 2, and 3). The results reveal the photo-induced surface carrier diffusion rates of ~30 cm·s for n = 1, ~180 cm·s for n = 2, and ~470 cm·s for n = 3, which are over 20 times larger than bulk. This is because charge carrier transmission channels have much wider distributions on the top surface compared to the bulk, as supported by the Density Functional Theory (DFT) calculations. Finally, our findings represent the demonstration to directly correlate the discrepancies between surface and bulk carrier diffusion behaviors, their relationship with exciton binding energy, and the number of layers in 2D perovskites, providing valuable insights into enhancing the performance of 2D perovskite-based optoelectronic devices through interface engineering.
在层状二维(2D)钙钛矿中,夹在阳离子间隔层之间的无机钙钛矿层形成量子阱(QW)结构,表现出较大的激子结合能,这阻碍了激子有效地解离为自由载流子。这导致载流子传输性能不佳以及基于光转换的器件性能低下,并且由于实时可达性方面的挑战,对潜在物理机制的直接理解,尤其是关于表面态的理解,即便并非不可能,也仍然极其困难。在此,我们利用了四维扫描超快电子显微镜(4D-SUEM),这是一种用于绘制表面载流子扩散的高灵敏度技术,其与体相中的扩散不同,且对材料性能有重大影响。我们直接在具有不同无机钙钛矿层厚度(n = 1、2和3)的二维钙钛矿顶表面上可视化了光生载流子在空间和时间维度上的传输。结果显示,n = 1时的光致表面载流子扩散速率约为30 cm·s,n = 2时约为180 cm·s,n = 3时约为470 cm·s,这些速率比体相中的速率大20倍以上。这是因为与体相相比,电荷载流子传输通道在顶表面上具有更广泛的分布,这得到了密度泛函理论(DFT)计算的支持。最后,我们的研究结果表明可以直接关联表面和体相载流子扩散行为之间的差异、它们与激子结合能的关系以及二维钙钛矿中的层数,为通过界面工程提高二维钙钛矿基光电器件的性能提供了有价值的见解。