Suppr超能文献

用于保护电动汽车充电基础设施免受网络物理攻击的迁移学习

Transfer learning for securing electric vehicle charging infrastructure from cyber-physical attacks.

作者信息

Almadhor Ahmad, Alsubai Shtwai, Bouazzi Imen, Karovic Vincent, Davidekova Monika, Al Hejaili Abdullah, Sampedro Gabriel Avelino

机构信息

Department of Computer Engineering and Networks, College of Computer and Information Sciences, Jouf University, Sakaka, 72388, Saudi Arabia.

College of Computer Engineering and Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, 16273, Saudi Arabia.

出版信息

Sci Rep. 2025 Mar 18;15(1):9331. doi: 10.1038/s41598-025-93135-w.

Abstract

Electric Vehicle Charging Station (EVCS) security is a growing concern in today's connected world due to the growing complexity and frequency of cyber threats. Traditional Intrusion Detection Systems (IDS) for EV chargers struggle to detect novel or unexpected attacks due to their usage of predetermined signatures and limited detection capabilities. Existing EV charging station security systems are unable to identify many known and undiscovered threats since they primarily rely on feature selection and categorization accuracy. It is common for these systems to be constructed using conventional machine learning algorithms. So many common signs of attacks are ignored. This paper proposes a Transfer learning (TL) framework for cyber-physical attack detection in EVCS in order to overcome these difficulties and improve both accuracy and scalability. The weights preserved from the Deep Neural Network (DNN) model after implementing data normalization and min-max scaling techniques utilized for training are used to initialize a new model termed Transfer Learning. The study also provides a comparison with different DL models such as Long Short-Term Memory (LSTM), Recurrent Neural Networks (RNN), Long Short-Term Memory-Recurrent Neural Networks (LSTM-RNN), and Gated Recurrent Unit (GRU). The CICEVSE2024 (EVSE-A and EVSE-B) datasets are used to assess the framework, where one dataset is used to train and store weights, and the second is used to evaluate the learned patterns using transfer learning. Several evaluation matrices are used to evaluate the suggested model. The experimental results demonstrate that the TL model attained 93% accuracy. Consequently, the pre-train TL model provides a high degree of symmetry between EVCS security and the detection of malicious attacks.

摘要

在当今互联互通的世界中,由于网络威胁的复杂性不断增加且频率日益提高,电动汽车充电站(EVCS)的安全性愈发受到关注。传统的电动汽车充电器入侵检测系统(IDS)由于使用预定特征以及检测能力有限,难以检测到新颖或意外的攻击。现有的电动汽车充电站安全系统无法识别许多已知和未知的威胁,因为它们主要依赖特征选择和分类准确性。这些系统通常使用传统机器学习算法构建,因此许多常见的攻击迹象被忽略。本文提出了一种用于电动汽车充电站网络物理攻击检测的迁移学习(TL)框架,以克服这些困难并提高准确性和可扩展性。在实施用于训练的数据归一化和最小 - 最大缩放技术后,从深度神经网络(DNN)模型保留的权重用于初始化一个称为迁移学习的新模型。该研究还与不同的深度学习模型进行了比较,如长短期记忆网络(LSTM)、循环神经网络(RNN)、长短期记忆 - 循环神经网络(LSTM - RNN)和门控循环单元(GRU)。使用CICEVSE2024(EVSE - A和EVSE - B)数据集来评估该框架,其中一个数据集用于训练和存储权重,另一个用于使用迁移学习评估学习到的模式。使用了几个评估矩阵来评估所提出的模型。实验结果表明,迁移学习模型的准确率达到了93%。因此,预训练的迁移学习模型在电动汽车充电站安全性和恶意攻击检测之间提供了高度的对称性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aa58/11920061/e0b788f16327/41598_2025_93135_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验