Suppr超能文献

基于汽车电子取证的大规模电动汽车时空调度中的碳管理

Carbon management in massive electric vehicle temporal and spatial scheduling with automotive electronic forensics.

作者信息

Cao Yongsheng, Zhang Yihong, Zhao Caiping

机构信息

Shanghai Dianji University, Shanghai, 200090, China.

Artificial Intelligence Institute, Shanghai Jiao Tong University, Shanghai, 200240, China.

出版信息

Sci Rep. 2025 Mar 18;15(1):9249. doi: 10.1038/s41598-025-93798-5.

Abstract

Electric vehicles (EVs) provide an environmentally friendly solution to reduce reliance on fossil fuels. However, increasing EV adoption and distributed solar generation pose new challenges for power systems, such as increased load variability and forecasting complexity. High penetration levels of EVs and rooftop photovoltaics introduce operational challenges that traditional power systems were not designed to handle. This study proposes a novel two-layer optimization model to address these issues by coordinating the scheduling of EVs, generators, and solar power. The upper-layer optimization focuses on coordinating EV charging and discharging schedules with thermal generators and base load in the transmission grid, considering solar power availability. The lower-layer optimization addresses spatial scheduling of EV loads in the distribution grid. To evaluate the proposed strategy, simulations were conducted on a benchmark system comprising an 8-unit transmission network interconnected with an IEEE 33-bus distribution feeder. The results demonstrate that the proposed two-layer optimization model reduces total operational costs by 22.8% compared to the ACM-PSO model, while achieving a 4.3% improvement in peak-valley difference reduction, effectively enhancing load balancing. These results highlight the economic and operational advantages of the proposed strategy, particularly in addressing challenges like peak load management and network efficiency. Additionally, the model integrates solar power efficiently and incorporates location-specific forensic data collection from EVs, providing valuable insights for distribution network planning and operation. These findings emphasize the importance of optimizing EV load placement and scheduling to improve grid performance and support sustainable energy adoption.

摘要

电动汽车(EV)为减少对化石燃料的依赖提供了一种环保解决方案。然而,电动汽车普及率的提高和分布式太阳能发电给电力系统带来了新的挑战,如负荷变化性增加和预测复杂性提高。电动汽车和屋顶光伏发电的高渗透率带来了传统电力系统设计时未考虑应对的运行挑战。本研究提出了一种新颖的两层优化模型,通过协调电动汽车、发电机和太阳能电力的调度来解决这些问题。上层优化侧重于在考虑太阳能可用性的情况下,将电动汽车的充电和放电调度与热力发电机及输电网中的基本负荷进行协调。下层优化解决配电网中电动汽车负荷的空间调度问题。为评估所提出的策略,在一个基准系统上进行了仿真,该系统包括一个由8个单元组成的输电网络与一个IEEE 33节点配电馈线相连。结果表明,与ACM-PSO模型相比,所提出的两层优化模型使总运营成本降低了22.8%,同时在减少峰谷差方面提高了4.3%,有效增强了负荷平衡。这些结果凸显了所提策略在经济和运行方面的优势,尤其是在应对诸如峰值负荷管理和网络效率等挑战方面。此外,该模型有效地整合了太阳能电力,并纳入了来自电动汽车的特定位置取证数据收集,为配电网规划和运行提供了有价值的见解。这些发现强调了优化电动汽车负荷布局和调度以提高电网性能及支持可持续能源采用的重要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aff1/11920519/6d0b8200e2f8/41598_2025_93798_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验