Suppr超能文献

基于深度迁移学习的塔里木盆地北部岩溶碳酸盐岩走滑断层地震特征研究

Deep transfer learning for seismic characterization of strike-slip faults in karstified carbonates from the northern Tarim basin.

作者信息

Liu Jiawei, Wu Guanghui, Chen Lixin, Wan Xiaoguo, Ma Bingshan, Zhang Ransong, Qiu Chen, Wang Xupeng

机构信息

School of Geoscience and Technology, Southwest Petroleum University, Chengdu, 610500, China.

Qiangtang Basin Research Institute, Southwest Petroleum University, Chengdu, 610500, China.

出版信息

Sci Rep. 2025 Mar 18;15(1):9242. doi: 10.1038/s41598-025-94134-7.

Abstract

The largest pre-Mesozoic ultra-deep (> 6000 m) strike-slip fault-controlled oilfield has been discovered in the northern Tarim Basin of northwestern China, and a deeper interpretation of strike-slip faults is crucial for optimizing well trajectory and development plans. Conventional seismic methods struggle to image strike-slip faults in karstified areas. With the advancements in deep learning, researchers have begun to use it to detect seismic faults. However, challenges persist in constructing actual fault labels and obtaining a large amount of fault labels. For this contribution, we propose a method for constructing fault labels and introduce a deep transfer learning workflow using Unet to detect strike-slip faults in the northern Tarim Basin. The results demonstrate that this method effectively suppresses non-fault features such as karstification and provides clear imaging of fault geometry. Multiple NW- and NE-striking strike-slip faults were identified within the study area, which is consistent with well data and seismic interpretations. Analysis of deep transfer learning attributes revealed four styles of faults, and the degree of fault connectivity plays a significant role in hydrocarbon accumulation. The results of this work highlight the effectiveness of deep transfer learning in fault characterization and suggest its potential applicability in other regions with complex geological conditions.

摘要

在中国西北部塔里木盆地北部发现了最大的中生代前超深层(>6000米)走滑断层控制油田,对走滑断层进行更深入解释对于优化井眼轨迹和开发计划至关重要。传统地震方法难以对岩溶地区的走滑断层进行成像。随着深度学习的发展,研究人员开始利用它来检测地震断层。然而,在构建实际断层标签和获取大量断层标签方面仍然存在挑战。为此,我们提出了一种构建断层标签的方法,并引入了一种使用Unet的深度迁移学习工作流程来检测塔里木盆地北部的走滑断层。结果表明,该方法有效抑制了岩溶等非断层特征,并清晰成像了断层几何形状。在研究区内识别出多条NW向和NE向走滑断层,与钻井数据和地震解释结果一致。对深度迁移学习属性的分析揭示了四种断层样式,断层连通程度对油气成藏起着重要作用。这项工作的结果突出了深度迁移学习在断层表征方面的有效性,并表明其在其他地质条件复杂地区的潜在适用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3087/11920220/655e75cb2b9a/41598_2025_94134_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验