Do Tuong Ha, Trinh Dao, Truong Thi Be Ta, Trinh Thuat T
Group of Applied Research in Advanced Materials for Sustainable Development, Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam.
Laboratoire des Sciences de l'Ingénieur pour l'Environnement, LaSIE UMR 7356 CNRS, La Rochelle Université, Avenue Michel Crépeau, 17000, La Rochelle, France.
Sci Rep. 2025 Mar 18;15(1):9382. doi: 10.1038/s41598-025-93887-5.
Effective plastic management is crucial in addressing the growing environmental challenges posed by plastic pollution. Among various plastics, polyoxymethylene (POM) stands out as a widely used engineering thermoplastic with significant applications in industries . Innovative recycling solutions are essential to mitigate its environmental impact. This study investigates the supercritical water gasification (SCWG) of POM plastics at a molecular level using reactive molecular dynamics simulations. The research aims to provide insights into the factors influencing the SCWG process. Key findings reveal that temperature significantly affects reaction mechanisms, while the primary syngas products include hydrogen , carbon monoxide, and carbon dioxide. A notable trend observed is the increase in activation energy as water content increases, highlighting the importance of optimizing hydration levels for efficient conversion. The calculated activation energies range from 106 to 135 kJ/mol, aligning well with experimental findings (160 kJ/mol). The study validates the computational approach by demonstrating excellent agreement between simulation results and experimental findings on the molar fraction of gas and activation energy, underscoring its reliability as a predictive tool for process design and optimization. Furthermore, the research contributes to sustainable waste management by offering strategies to enhance SCWG efficiency.
有效的塑料管理对于应对塑料污染带来的日益严峻的环境挑战至关重要。在各种塑料中,聚甲醛(POM)作为一种广泛使用的工程热塑性塑料脱颖而出,在工业中有着重要应用。创新的回收解决方案对于减轻其环境影响至关重要。本研究使用反应分子动力学模拟在分子水平上研究了聚甲醛塑料的超临界水气化(SCWG)。该研究旨在深入了解影响超临界水气化过程的因素。主要发现表明,温度显著影响反应机理,而主要的合成气产物包括氢气、一氧化碳和二氧化碳。观察到一个显著趋势,即随着含水量增加活化能升高,这突出了优化水合水平以实现高效转化的重要性。计算得到的活化能范围为106至135 kJ/mol,与实验结果(160 kJ/mol)吻合良好。该研究通过展示模拟结果与关于气体摩尔分数和活化能的实验结果之间的高度一致性,验证了计算方法,强调了其作为过程设计和优化预测工具的可靠性。此外,该研究通过提供提高超临界水气化效率的策略,为可持续废物管理做出了贡献。