Suppr超能文献

一个基于网络的平台,用于运用敏捷方法和WISN理论优化医疗资源分配和工作量管理。

A web-based platform for optimizing healthcare resource allocation and workload management using agile methodology and WISN theory.

作者信息

Prabhune Akash Gajanan, Priya P S Karpaga, Chandra Rohit, Thakur Ankur, Srihari Viany R, Bhat Sachin S

机构信息

ADMIRE Centre for Advancing Digital Health, Institute of Health Management Research, Bangalore (IIHMR-B), Bengaluru, India.

出版信息

BMC Health Serv Res. 2025 Mar 18;25(1):400. doi: 10.1186/s12913-025-12473-7.

Abstract

BACKGROUND

Effective healthcare workforce management is critical for ensuring quality care delivery, particularly in resource-constrained settings. The World Health Organization's (WHO) Workload Indicators of Staffing Need (WISN) methodology provides an evidence-based framework for optimizing staffing levels. However, manual implementation of the WISN methodology is labour-intensive, error-prone, and time-consuming. To address these challenges, the Platform for Resource Allocation and Optimization for Healthcare Facilities (PRAYOJN) platform was developed as a web-based tool to automate WISN calculations, streamline data analysis, and improve workforce planning.

OBJECTIVE

To develop and validate a web-based system that automates the WISN methodology for healthcare workforce planning.

METHODS

The PRAYOJN platform was developed using an agile methodology, structured over five iterative sprints. These sprints incorporated stakeholder feedback to refine system functionalities, ensuring adaptability to real-world healthcare needs. The platform integrates data for principal, supporting, and ancillary tasks to calculate staffing requirements. Key functionalities include automated computation of Available Work Time (AWT), Standard Workload (SW), Category Allowance Factor (CAF), and Individual Allowance Factor (IAF). Alpha testing validated usability and accuracy, while beta testing in a clinical phlebotomy department assessed real-world performance.

RESULTS

The platform calculated an ideal staffing requirement of 15.53 Full-Time Equivalent (FTE) for the phlebotomy department, aligning closely with the current staff strength of 15 FTE. Agile development ensured iterative improvements, enhancing user interface (UI) and user experience (UX). Feedback highlighted the platform's user-friendly design, with dynamic visualizations such as pie charts and bar graphs aiding workload interpretation. Users praised its efficiency, adaptability, and role in reducing calculation complexity.

CONCLUSION

PRAYOJN modernizes and enhances WISN-based workforce planning by automating workload calculations, improving data visualization, and supporting real-time decision-making. Its scalability and intuitive interface position it as a valuable tool for optimizing staffing efficiency across diverse healthcare environments.

摘要

背景

有效的医疗人力资源管理对于确保提供高质量的医疗服务至关重要,特别是在资源有限的环境中。世界卫生组织(WHO)的人员配置需求工作量指标(WISN)方法提供了一个基于证据的框架,用于优化人员配置水平。然而,手动实施WISN方法劳动强度大、容易出错且耗时。为应对这些挑战,开发了医疗设施资源分配与优化平台(PRAYOJN)作为基于网络的工具,以实现WISN计算自动化、简化数据分析并改善劳动力规划。

目的

开发并验证一个基于网络的系统,该系统能自动执行用于医疗劳动力规划的WISN方法。

方法

PRAYOJN平台采用敏捷方法开发,分为五个迭代冲刺阶段构建。这些冲刺阶段纳入了利益相关者的反馈,以完善系统功能,确保适应现实世界的医疗需求。该平台整合了主要、支持和辅助任务的数据,以计算人员配置需求。关键功能包括可用工作时间(AWT)、标准工作量(SW)、类别津贴系数(CAF)和个人津贴系数(IAF)的自动计算。阿尔法测试验证了可用性和准确性,而在临床采血部门进行的贝塔测试评估了实际性能。

结果

该平台计算出采血部门理想的人员配置需求为15.53个全时当量(FTE),与目前15个FTE的员工规模密切相符。敏捷开发确保了迭代改进,提升了用户界面(UI)和用户体验(UX)。反馈突出了该平台用户友好的设计,如饼图和柱状图等动态可视化有助于解读工作量。用户称赞其效率、适应性以及在降低计算复杂性方面的作用。

结论

PRAYOJN通过实现工作量计算自动化、改善数据可视化并支持实时决策,使基于WISN的劳动力规划实现现代化并得到增强。其可扩展性和直观界面使其成为优化不同医疗环境中人员配置效率的宝贵工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a1ca/11916971/87cbde32aa98/12913_2025_12473_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验