Suppr超能文献

受生物启发的木质纤维素泡沫:卓越的韧性和隔热性能。

Bioinspired Lignocellulose Foam: Exceptional Toughness and Thermal Insulation.

作者信息

Dong Hongping, Wei Song, Chen Wenshuai, Lu Bingan, Cai Zhiyong, Yang Bin, Li Xiazhen, Li Xianjun

机构信息

College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004 P. R. China.

Key Laboratory of Bio-based Material Science and Technology, Ministry of Education, Northeast Forestry University, Harbin 150040 P. R. China.

出版信息

ACS Nano. 2025 Apr 1;19(12):11712-11727. doi: 10.1021/acsnano.4c11945. Epub 2025 Mar 19.

Abstract

The biofoam exhibits significant advantages in environmental and sustainability aspects as an effective alternative to petrochemical foams; however, its limited mechanical stability seriously hinders its practical application. Herein, a synergistic strategy combining structural bionics and supramolecular cross-linking is proposed to fabricate a biodegradable lignocellulosic biofoam featuring a "pillar-spacer" microlattice texture, utilizing multiscale cellulose fibers (CFs) and sodium lignin sulfonate (SLS) as inspiration from the natural cuttlebone. Attributed to the robust interfacial bonding between nanoscale cellulose and SLS, akin to "rebar and cement", complemented by the mechanical support from cellulose microfibers, the CFs/SLS biofoam with a low density of 62 mg cm exhibits a compression modulus of 6.56 MPa, nearly four times higher than that of the CF biofoam (1.67 MPa). Additionally, it exhibits excellent thermal insulation, boasting a remarkably low thermal conductivity of 0.046 W m K, outperforming recently reported biofoams and plastic foams. Moreover, integrating a functional SiO nanocoating results in the SiO@CFs/SLS foam, which delivers satisfactory flame retardation and smoke inhibition without compromising the mechanical strength or thermal insulation. This work highlights the potential for developing sustainable, eco-friendly, and mechanically robust biofoams for practical applications.

摘要

作为石化泡沫的有效替代品,生物泡沫在环境和可持续性方面具有显著优势;然而,其有限的机械稳定性严重阻碍了其实际应用。在此,提出了一种结合结构仿生和超分子交联的协同策略,以制备具有“柱-间隔物”微晶格结构的可生物降解木质纤维素生物泡沫,以多尺度纤维素纤维(CFs)和木质素磺酸钠(SLS)为灵感来源,借鉴天然乌贼骨。由于纳米级纤维素与SLS之间存在强大的界面结合,类似于“钢筋与水泥”,再加上纤维素微纤维的机械支撑,密度为62 mg/cm的CFs/SLS生物泡沫的压缩模量为6.56 MPa,几乎是CF生物泡沫(1.67 MPa)的四倍。此外,它还具有出色的隔热性能,热导率极低,仅为0.046 W/(m·K),优于最近报道的生物泡沫和塑料泡沫。此外,整合功能性SiO纳米涂层得到SiO@CFs/SLS泡沫,其在不影响机械强度或隔热性能的情况下具有令人满意的阻燃和抑烟性能。这项工作突出了开发可持续、环保且机械性能强大的生物泡沫用于实际应用的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验