文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

A bibliometric analysis of artificial intelligence research in critical illness: a quantitative approach and visualization study.

作者信息

Luo Zixin, Lv Jialian, Zou Kang

机构信息

The First Clinical Medical College, Gannan Medical University, Ganzhou City, Jiangxi, China.

Department of Critical Care Medicine, The First Affiliated Hospital of Gannan Medical University, Ganzhou City, Jiangxi, China.

出版信息

Front Med (Lausanne). 2025 Mar 4;12:1553970. doi: 10.3389/fmed.2025.1553970. eCollection 2025.


DOI:10.3389/fmed.2025.1553970
PMID:40103796
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11914116/
Abstract

BACKGROUND: Critical illness medicine faces challenges such as high data complexity, large individual differences, and rapid changes in conditions. Artificial Intelligence (AI) technology, especially machine learning and deep learning, offers new possibilities for addressing these issues. By analyzing large amounts of patient data, AI can help identify diseases earlier, predict disease progression, and support clinical decision-making. METHODS: In this study, scientific literature databases such as Web of Science were searched, and bibliometric methods along with visualization tools R-bibliometrix, VOSviewer 1.6.19, and CiteSpace 6.2.R4 were used to perform a visual analysis of the retrieved data. RESULTS: This study analyzed 900 articles from 6,653 authors in 82 countries between 2005 and 2024. The United States is a major contributor in this field, with Harvard University having the highest betweenness centrality. Noseworthy PA is a core author in this field, and and lead other journals in terms of the number of publications. Artificial Intelligence has tremendous potential in the identification and management of heart failure and sepsis. CONCLUSION: The application of AI in critical illness holds great potential, particularly in enhancing diagnostic accuracy, personalized treatment, and clinical decision support. However, to achieve widespread application of AI technology in clinical practice, challenges such as data privacy, model interpretability, and ethical issues need to be addressed. Future research should focus on the transparency, interpretability, and clinical validation of AI models to ensure their effectiveness and safety in critical illness.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dd13/11914116/a157594325c2/fmed-12-1553970-g0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dd13/11914116/edec290a05bf/fmed-12-1553970-g0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dd13/11914116/0e9c355743b2/fmed-12-1553970-g0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dd13/11914116/2cdfac13a032/fmed-12-1553970-g0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dd13/11914116/d9bf68ef64cc/fmed-12-1553970-g0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dd13/11914116/b8f1d360258a/fmed-12-1553970-g0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dd13/11914116/85f26d93b884/fmed-12-1553970-g0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dd13/11914116/a157594325c2/fmed-12-1553970-g0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dd13/11914116/edec290a05bf/fmed-12-1553970-g0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dd13/11914116/0e9c355743b2/fmed-12-1553970-g0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dd13/11914116/2cdfac13a032/fmed-12-1553970-g0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dd13/11914116/d9bf68ef64cc/fmed-12-1553970-g0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dd13/11914116/b8f1d360258a/fmed-12-1553970-g0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dd13/11914116/85f26d93b884/fmed-12-1553970-g0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dd13/11914116/a157594325c2/fmed-12-1553970-g0007.jpg

相似文献

[1]
A bibliometric analysis of artificial intelligence research in critical illness: a quantitative approach and visualization study.

Front Med (Lausanne). 2025-3-4

[2]
Research Trends in the Application of Artificial Intelligence in Oncology: A Bibliometric and Network Visualization Study.

Front Biosci (Landmark Ed). 2022-8-31

[3]
The application of artificial intelligence in insomnia, anxiety, and depression: A bibliometric analysis.

Digit Health. 2025-3-2

[4]
Research hotspots and frontiers of machine learning in renal medicine: a bibliometric and visual analysis from 2013 to 2024.

Int Urol Nephrol. 2025-3

[5]
Application of AI in Sepsis: Citation Network Analysis and Evidence Synthesis.

Interact J Med Res. 2024-4-15

[6]
Global research trends of artificial intelligence applied in esophageal carcinoma: A bibliometric analysis (2000-2022) CiteSpace and VOSviewer.

Front Oncol. 2022-8-25

[7]
Application of artificial intelligence in Alzheimer's disease: a bibliometric analysis.

Front Neurosci. 2025-2-14

[8]
Mapping the landscape of artificial intelligence in skin cancer research: a bibliometric analysis.

Front Oncol. 2023-10-13

[9]
Research on ultrasound-based radiomics: a bibliometric analysis.

Quant Imaging Med Surg. 2024-7-1

[10]
Application of Artificial Intelligence in Retinopathy of Prematurity From 2010 to 2023: A Bibliometric Analysis.

Health Sci Rep. 2025-4-18

引用本文的文献

[1]
Global trends in machine learning applications for single-cell transcriptomics research.

Hereditas. 2025-8-16

本文引用的文献

[1]
Leading with AI in critical care nursing: challenges, opportunities, and the human factor.

BMC Nurs. 2024-10-14

[2]
A quantitative analysis of artificial intelligence research in cervical cancer: a bibliometric approach utilizing CiteSpace and VOSviewer.

Front Oncol. 2024-9-3

[3]
Artificial Intelligence Recognition Model Using Liquid-Based Cytology Images to Discriminate Malignancy and Histological Types of Non-Small-Cell Lung Cancer.

Pathobiology. 2025

[4]
Health Equity and Ethical Considerations in Using Artificial Intelligence in Public Health and Medicine.

Prev Chronic Dis. 2024-8-22

[5]
Unraveling the impact of therapeutic drug monitoring via machine learning for patients with sepsis.

Cell Rep Med. 2024-8-20

[6]
The Impact of Multi-Institution Datasets on the Generalizability of Machine Learning Prediction Models in the ICU.

Crit Care Med. 2024-11-1

[7]
Artificial intelligence and its implications for data privacy.

Curr Opin Psychol. 2024-8

[8]
Establishment and Verification of an Artificial Intelligence Prediction Model for Children With Sepsis.

Pediatr Infect Dis J. 2024-8-1

[9]
Artificial Intelligence in Heart Failure: Friend or Foe?

Life (Basel). 2024-1-19

[10]
A deep learning system for predicting time to progression of diabetic retinopathy.

Nat Med. 2024-2

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索