文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

多机构数据集对 ICU 中机器学习预测模型泛化能力的影响。

The Impact of Multi-Institution Datasets on the Generalizability of Machine Learning Prediction Models in the ICU.

机构信息

Charité Lab for Artificial Intelligence in Medicine (CLAIM), CharitéUniversitätsmedizin Berlin, Berlin, Germany .

QUEST Center for Responsible Research, Berlin Institute of Health at Charité Universitätsmedizin Berlin, Berlin, Germany .

出版信息

Crit Care Med. 2024 Nov 1;52(11):1710-1721. doi: 10.1097/CCM.0000000000006359. Epub 2024 Jul 3.


DOI:10.1097/CCM.0000000000006359
PMID:38958568
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11469625/
Abstract

OBJECTIVES: To evaluate the transferability of deep learning (DL) models for the early detection of adverse events to previously unseen hospitals. DESIGN: Retrospective observational cohort study utilizing harmonized intensive care data from four public datasets. SETTING: ICUs across Europe and the United States. PATIENTS: Adult patients admitted to the ICU for at least 6 hours who had good data quality. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: Using carefully harmonized data from a total of 334,812 ICU stays, we systematically assessed the transferability of DL models for three common adverse events: death, acute kidney injury (AKI), and sepsis. We tested whether using more than one data source and/or algorithmically optimizing for generalizability during training improves model performance at new hospitals. We found that models achieved high area under the receiver operating characteristic (AUROC) for mortality (0.838-0.869), AKI (0.823-0.866), and sepsis (0.749-0.824) at the training hospital. As expected, AUROC dropped when models were applied at other hospitals, sometimes by as much as -0.200. Using more than one dataset for training mitigated the performance drop, with multicenter models performing roughly on par with the best single-center model. Dedicated methods promoting generalizability did not noticeably improve performance in our experiments. CONCLUSIONS: Our results emphasize the importance of diverse training data for DL-based risk prediction. They suggest that as data from more hospitals become available for training, models may become increasingly generalizable. Even so, good performance at a new hospital still depended on the inclusion of compatible hospitals during training.

摘要

目的:评估深度学习 (DL) 模型在早期检测不良事件方面的可转移性,以应用于以前未见的医院。

设计:利用来自四个公共数据集的协调一致的重症监护数据进行回顾性观察性队列研究。

设置:欧洲和美国的 ICU。

患者:入住 ICU 至少 6 小时且数据质量良好的成年患者。

干预措施:无。

测量和主要结果:使用来自总共 334812 例 ICU 入住的数据进行仔细协调,我们系统地评估了 DL 模型在三种常见不良事件(死亡、急性肾损伤 (AKI) 和脓毒症)中的可转移性。我们测试了在训练过程中使用多个数据源和/或算法优化是否可以提高模型在新医院的性能。我们发现,在训练医院,模型在死亡率(0.838-0.869)、AKI(0.823-0.866)和脓毒症(0.749-0.824)方面的接受者操作特征曲线下面积(AUROC)很高。正如预期的那样,当模型应用于其他医院时,AUROC 会下降,有时下降幅度高达 -0.200。使用多个数据集进行训练可以减轻性能下降,多中心模型的性能大致与最佳单中心模型相当。在我们的实验中,专门用于提高通用性的方法并没有明显提高性能。

结论:我们的结果强调了用于 DL 基于风险预测的多样化训练数据的重要性。它们表明,随着更多医院的数据可用于训练,模型可能会变得越来越具有通用性。即便如此,在新医院的良好表现仍然取决于在训练过程中包含兼容的医院。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ced7/11469625/144868f7def8/ccm-52-1710-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ced7/11469625/06d046a0ec08/ccm-52-1710-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ced7/11469625/7d6b0ca95edb/ccm-52-1710-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ced7/11469625/4adc77799f77/ccm-52-1710-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ced7/11469625/144868f7def8/ccm-52-1710-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ced7/11469625/06d046a0ec08/ccm-52-1710-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ced7/11469625/7d6b0ca95edb/ccm-52-1710-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ced7/11469625/4adc77799f77/ccm-52-1710-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ced7/11469625/144868f7def8/ccm-52-1710-g004.jpg

相似文献

[1]
The Impact of Multi-Institution Datasets on the Generalizability of Machine Learning Prediction Models in the ICU.

Crit Care Med. 2024-11-1

[2]
Construction and evaluation of a mortality prediction model for patients with acute kidney injury undergoing continuous renal replacement therapy based on machine learning algorithms.

Ann Med. 2024-12

[3]
Using machine learning methods to predict in-hospital mortality of sepsis patients in the ICU.

BMC Med Inform Decis Mak. 2020-10-2

[4]
Dynamic and explainable machine learning prediction of mortality in patients in the intensive care unit: a retrospective study of high-frequency data in electronic patient records.

Lancet Digit Health. 2020-4

[5]
Machine Learning-Based Prediction Model for ICU Mortality After Continuous Renal Replacement Therapy Initiation in Children.

Crit Care Explor. 2024-12-17

[6]
Multicentre validation of a sepsis prediction algorithm using only vital sign data in the emergency department, general ward and ICU.

BMJ Open. 2018-1-26

[7]
Predicting in-hospital mortality of patients with acute kidney injury in the ICU using random forest model.

Int J Med Inform. 2019-2-12

[8]
An Interpretable Machine Learning Model for Accurate Prediction of Sepsis in the ICU.

Crit Care Med. 2018-4

[9]
Explainable Machine Learning Model for Predicting Persistent Sepsis-Associated Acute Kidney Injury: Development and Validation Study.

J Med Internet Res. 2025-4-28

[10]
Longitudinal Model Shifts of Machine Learning-Based Clinical Risk Prediction Models: Evaluation Study of Multiple Use Cases Across Different Hospitals.

J Med Internet Res. 2024-12-13

引用本文的文献

[1]
Hybrid Radiomics and Machine Learning for Brain Tumors Multi-Task Classification: An Exploratory Study on Integrating GLCM and Curvelet-Based Features for Enhanced Accuracy.

Health Sci Rep. 2025-8-20

[2]
Multiplex Targeted Proteomic Analysis of Cytokine Ratios for ICU Mortality in Severe COVID-19.

Proteomes. 2025-8-2

[3]
Predicting near-complete pathological response to (chemo)radiotherapy in patients with rectal cancer: A federated learning study.

Med Phys. 2025-8

[4]
So You've Got a High AUC, Now What? An Overview of Important Considerations when Bringing Machine-Learning Models from Computer to Bedside.

Med Decis Making. 2025-8

[5]
Propofol-associated Hypertriglyceridemia: Development and Multicenter Validation of a Machine-Learning-Based Prediction Tool.

J Intensive Care Med. 2025-5-15

[6]
Change of Heart: Can Artificial Intelligence Transform Infective Endocarditis Management?

Pathogens. 2025-4-9

[7]
Does Artificial Intelligence Bring New Insights in Diagnosing Phlebological Diseases?-A Systematic Review.

Biomedicines. 2025-3-22

[8]
Cytokine-Based Insights into Bloodstream Infections and Bacterial Gram Typing in ICU COVID-19 Patients.

Metabolites. 2025-3-16

[9]
A bibliometric analysis of artificial intelligence research in critical illness: a quantitative approach and visualization study.

Front Med (Lausanne). 2025-3-4

[10]
Early Prediction of ICU Mortality in Patients with Acute Hypoxemic Respiratory Failure Using Machine Learning: The MEMORIAL Study.

J Clin Med. 2025-3-4

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索