Suppr超能文献

在阿尔茨海默病谱系中区分来自三个临床队列的认知未受损老年人时比较机器学习分类模型:COMPASS-ND研究中的示范分析

Comparing machine learning classifier models in discriminating cognitively unimpaired older adults from three clinical cohorts in the Alzheimer's disease spectrum: demonstration analyses in the COMPASS-ND study.

作者信息

Fah Harrison, Bohn Linzy, Greiner Russell, Dixon Roger A

机构信息

Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada.

Department of Computing Science, University of Alberta, Edmonton, AB, Canada.

出版信息

Front Aging Neurosci. 2025 Mar 4;17:1542514. doi: 10.3389/fnagi.2025.1542514. eCollection 2025.

Abstract

BACKGROUND

Research in aging, impairment, and Alzheimer's disease (AD) often requires powerful computational models for discriminating between clinical cohorts and identifying early biomarkers and key risk or protective factors. Machine Learning (ML) approaches represent a diverse set of data-driven tools for performing such tasks in big or complex datasets. We present systematic demonstration analyses to compare seven frequently used ML classifier models and two eXplainable Artificial Intelligence (XAI) techniques on multiple performance metrics for a common neurodegenerative disease dataset. The aim is to identify and characterize the best performing ML and XAI algorithms for the present data.

METHOD

We accessed a Canadian Consortium on Neurodegeneration in Aging dataset featuring four well-characterized cohorts: Cognitively Unimpaired (CU), Subjective Cognitive Impairment (SCI), Mild Cognitive Impairment (MCI), and AD ( = 255). All participants contributed 102 multi-modal biomarkers and risk factors. Seven ML algorithms were compared along six performance metrics in discriminating between cohorts. Two XAI algorithms were compared using five performance and five similarity metrics.

RESULTS

Although all ML models performed relatively well in the extreme-cohort comparison (CU/AD), the Super Learner (SL), Random Forest (RF) and Gradient-Boosted trees (GB) algorithms excelled in the challenging near-cohort comparisons (CU/SCI). For the XAI interpretation comparison, SHapley Additive exPlanations (SHAP) generally outperformed Local Interpretable Model agnostic Explanation (LIME) in key performance properties.

CONCLUSION

The ML results indicate that two tree-based methods (RF and GB) are reliable and effective as initial models for classification tasks involving discrete clinical aging and neurodegeneration data. In the XAI phase, SHAP performed better than LIME due to lower computational time (when applied to RF and GB) and incorporation of feature interactions, leading to more reliable results.

摘要

背景

关于衰老、损伤和阿尔茨海默病(AD)的研究通常需要强大的计算模型,以区分临床队列,并识别早期生物标志物以及关键风险或保护因素。机器学习(ML)方法是一组多样化的数据驱动工具,用于在大型或复杂数据集中执行此类任务。我们进行了系统的演示分析,以比较七种常用的ML分类器模型和两种可解释人工智能(XAI)技术在一个常见神经退行性疾病数据集的多个性能指标上的表现。目的是识别并描述针对当前数据表现最佳的ML和XAI算法。

方法

我们获取了一个加拿大衰老神经退行性疾病联盟的数据集,该数据集包含四个特征明确的队列:认知未受损(CU)、主观认知障碍(SCI)、轻度认知障碍(MCI)和AD(n = 255)。所有参与者提供了102种多模态生物标志物和风险因素。在区分队列时,比较了七种ML算法的六个性能指标。使用五个性能指标和五个相似性指标比较了两种XAI算法。

结果

尽管所有ML模型在极端队列比较(CU/AD)中表现相对较好,但超级学习器(SL)、随机森林(RF)和梯度提升树(GB)算法在具有挑战性的近队列比较(CU/SCI)中表现出色。对于XAI解释比较,SHapley加性解释(SHAP)在关键性能属性方面通常优于局部可解释模型无关解释(LIME)。

结论

ML结果表明,两种基于树的方法(RF和GB)作为涉及离散临床衰老和神经退行性疾病数据的分类任务的初始模型是可靠且有效的。在XAI阶段,由于计算时间较短(应用于RF和GB时)以及纳入了特征交互,SHAP比LIME表现更好,从而产生更可靠的结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8887/11913811/4105687c14bd/fnagi-17-1542514-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验