Cassiano Luanny de Brito Avelino, da Silva Jordão Paulino Cassiano, Martins Agnes Andrade, Barbosa Matheus Targino, Rodrigues Katryne Targino, Barbosa Ádylla Rominne Lima, da Silva Gomes Gabriela Ellen, Maia Paulo Raphael Leite, de Oliveira Patrícia Teixeira, de Sousa Lopes Maria Luiza Diniz, da Silva Ivanovitch Medeiros Dantas, de Aquino Martins Ana Rafaela Luz
Department of Dentistry, Federal University of Rio Grande do Norte - UFRN, Rio Grande do Norte, Natal, Brazil.
Postgraduate Program in Electrical and Computer Engineering, Center of Technology, Natal, Rio Grande do Norte, Brazil.
Clin Oral Investig. 2025 Mar 19;29(4):195. doi: 10.1007/s00784-025-06283-8.
To develop an artificial intelligence model based on convolutional neural network for detecting and measuring periodontal radiographic bone loss (RBL).
Keypoint annotations were carried out in 595 digital bitewing radiographic images using a Computer Vision Annotation Tool. The dataset was splitted: 416 of these images were trained using the You Only Look Once version 8 architecture with pose estimation (YOLO-v8-pose), 119 images were destined for the validation set, and 60 images were used for the test set, resulting in a model capable of detecting keypoints related to the cementoenamel junction (CEJ) and alveolar bone crest (ABC). In order to evaluate the performance of the obtained model, the following metrics were analyzed: F1-Score, precision, sensitivity and mean average precision (mAP). Then, an algorithm was implemented to measure the RBL by calculating the Euclidean distance between CEJ and ABC.
The model achieved an F1-Score of 66,89%, precision of 61,1%, a sensitivity of 73,9% and an mAP of 73.8%.
The developed model and its algorithm for identifying and measuring periodontal radiographic bone loss demonstrated promising performance, thereby presenting a potential tool for assisting in periodontal diagnosis. Further studies comparing the developed model with manual measurements performed by specialists are necessary for its validation.
Applying artificial intelligence in clinical dental practice can support diagnosis, streamline clinical workflows, and inform treatment planning, representing a significant advancement in dental automation.
开发一种基于卷积神经网络的人工智能模型,用于检测和测量牙周放射影像学骨吸收(RBL)。
使用计算机视觉标注工具对595张数字化咬合翼片放射图像进行关键点标注。数据集被划分:其中416张图像使用带有姿态估计的You Only Look Once版本8架构(YOLO-v8-pose)进行训练,119张图像用于验证集,60张图像用于测试集,从而得到一个能够检测与牙骨质釉质界(CEJ)和牙槽嵴顶(ABC)相关关键点的模型。为了评估所得模型的性能,分析了以下指标:F1分数、精确率、灵敏度和平均精度均值(mAP)。然后,实施一种算法,通过计算CEJ和ABC之间的欧几里得距离来测量RBL。
该模型的F1分数为66.89%,精确率为61.1%,灵敏度为73.9%,mAP为73.8%。
所开发的用于识别和测量牙周放射影像学骨吸收的模型及其算法表现出了有前景的性能,从而为辅助牙周诊断提供了一种潜在工具。为验证该模型,有必要进行进一步研究,将其与专家进行的手动测量进行比较。
在临床牙科实践中应用人工智能可以支持诊断、简化临床工作流程并为治疗计划提供信息,代表了牙科自动化的一项重大进展。