Suppr超能文献

不同步态模式的年轻男性下肢肌肉力量的关键参数及敏感性分析

Key parameters and sensitivity analysis of lower limb muscle strength in young men with different gait patterns.

作者信息

Wang Yifei, Sun Jianbo, Guo Xuesong, Dong Delong, Luan Chuankai, Wang Xiaolin

机构信息

College of Sports Sciences, Qufu Normal University, Jining, China.

Exercise and Sports Science Programme, School of Health Sciences, Universiti Sains Malaysia, Kota Bharu, Kelantan, Malaysia.

出版信息

PLoS One. 2025 Mar 19;20(3):e0318693. doi: 10.1371/journal.pone.0318693. eCollection 2025.

Abstract

OBJECTIVE

To explore the functional characteristics and principal component differences of electromyography in different phases of the gait cycle, to provide key parameters for identifying a complete gait, and to provide a reference for joint moment solving in the lower limb.

METHODS

Twenty young men were selected to measure the natural gait EMG of 14 muscles of the lower limb using VICON and NORAXON devices. Gait was classified into two categories according to the Niyogi S A classification, integral EMG differences were compared, and principal component analysis was performed on the differing muscles to calculate Cohen's d values for significant differences and ΔIEMG values for non-significant differences.

RESULTS

(1) Significant differences existed in the integral EMG of the left semitendinosus, right semitendinosus, right biceps femoris, and left gastrocnemius muscles, both lateral and medial. (2) Principal component analysis showed significant differences in the left semitendinosus for principal component five (P < 0.1, ES = 1.40); right biceps femoris for principal component three (ES = 0.63, 10%-30%); and left gastrocnemius medial for principal component four (P < 0.05, ES = 1.81, 40%-60%). The ΔIEMG% of the right semitendinosus principal components I-IV were 97.96%, 92.24%, 87.26%, and 75.08%, respectively; and the ΔIEMG% of the left gastrocnemius medial principal components I-IV were 90.95%, 75.08%, 96.37%, and 85.39%, respectively.

CONCLUSION

(1) Left semitendinosus, right semitendinosus, right biceps femoris, and left gastrocnemius can be used as the main muscles for gait recognition. (2) The left semitendinosus principal component V, the right biceps femoris principal component III, and the left gastrocnemius medial principal component IV are sensitive indicators for gait stage classification.

摘要

目的

探讨步态周期不同阶段肌电图的功能特征及主成分差异,为识别完整步态提供关键参数,并为下肢关节力矩求解提供参考。

方法

选取20名青年男性,使用VICON和NORAXON设备测量其下肢14块肌肉的自然步态肌电图。根据Niyogi S A分类将步态分为两类,比较积分肌电图差异,并对不同肌肉进行主成分分析,计算显著差异的Cohen's d值和非显著差异的ΔIEMG值。

结果

(1)左半腱肌、右半腱肌、右股二头肌以及左腓肠肌内外侧的积分肌电图存在显著差异。(2)主成分分析显示,左半腱肌主成分五存在显著差异(P < 0.1,ES = 1.40);右股二头肌主成分三存在显著差异(ES = 0.63,10%-30%);左腓肠肌内侧主成分四存在显著差异(P < 0.05,ES = 1.81,40%-60%)。右半腱肌主成分I-IV的ΔIEMG%分别为97.96%、92.24%、87.26%和75.08%;左腓肠肌内侧主成分I-IV的ΔIEMG%分别为90.95%、75.08%、96.37%和85.39%。

结论

(1)左半腱肌、右半腱肌、右股二头肌和左腓肠肌可作为步态识别的主要肌肉。(2)左半腱肌主成分V、右股二头肌主成分III和左腓肠肌内侧主成分IV是步态阶段分类的敏感指标。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9f7a/11922288/118eed0b3a11/pone.0318693.g001.jpg

相似文献

1
Key parameters and sensitivity analysis of lower limb muscle strength in young men with different gait patterns.
PLoS One. 2025 Mar 19;20(3):e0318693. doi: 10.1371/journal.pone.0318693. eCollection 2025.
2
Electromyographic analysis of lower limb muscles during the golf swing performed with three different clubs.
J Sports Sci. 2016;34(8):713-20. doi: 10.1080/02640414.2015.1069376. Epub 2015 Jul 22.
4
Neuromuscular Activation Differences During Gait in Patients With Ehlers-Danlos Syndrome and Healthy Adults.
Arthritis Care Res (Hoboken). 2020 Nov;72(11):1653-1662. doi: 10.1002/acr.24067.
5
Comparative electromyography analysis of subphase gait disorder in chronic stroke survivors.
PeerJ. 2024 Nov 14;12:e18473. doi: 10.7717/peerj.18473. eCollection 2024.
6
Kettlebell swing targets semitendinosus and supine leg curl targets biceps femoris: an EMG study with rehabilitation implications.
Br J Sports Med. 2013 Dec;47(18):1192-8. doi: 10.1136/bjsports-2011-090281. Epub 2012 Jun 26.
8
EMG Based Analysis of Gait Symmetry in Healthy Children.
Sensors (Basel). 2021 Sep 6;21(17):5983. doi: 10.3390/s21175983.

本文引用的文献

3
[Effect of walking mode on three-dimensional gait and EMG signals of human lower limbs].
Zhongguo Ying Yong Sheng Li Xue Za Zhi. 2020 Nov;36(6):551-555. doi: 10.12047/j.cjap.6021.2020.116.
5
A new methodology based on functional principal component analysis to study postural stability post-stroke.
Clin Biomech (Bristol). 2018 Jul;56:18-26. doi: 10.1016/j.clinbiomech.2018.05.003. Epub 2018 May 5.
6
The change of gait parameters during walking at different percentage of preferred walking speed for healthy adults aged 20-60 years.
Gait Posture. 2010 Jan;31(1):131-5. doi: 10.1016/j.gaitpost.2009.09.013. Epub 2009 Nov 24.
7
A comparison of multi-segment foot kinematics during level overground and treadmill walking.
Gait Posture. 2010 Jan;31(1):104-8. doi: 10.1016/j.gaitpost.2009.09.007. Epub 2009 Oct 24.
8
Progressive statistics for studies in sports medicine and exercise science.
Med Sci Sports Exerc. 2009 Jan;41(1):3-13. doi: 10.1249/MSS.0b013e31818cb278.
9
Functional data analysis of running kinematics in chronic Achilles tendon injury.
Med Sci Sports Exerc. 2008 Jul;40(7):1323-35. doi: 10.1249/MSS.0b013e31816c4807.
10
The effect of walking speed on the gait of typically developing children.
J Biomech. 2008;41(8):1639-50. doi: 10.1016/j.jbiomech.2008.03.015. Epub 2008 May 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验