Suppr超能文献

自闭症、自杀风险和心理健康护理的社会生态研究方案:整合机器学习与社区咨询以预防自杀

Protocol for socioecological study of autism, suicide risk, and mental health care: Integrating machine learning and community consultation for suicide prevention.

作者信息

Marlow Nicole M, Kramer Jessica M, Kirby Anne V, Jacobs Molly M

机构信息

Department of Health Services, Research, Management and Policy, College of Public Health and Health Professions, University of Florida, Gainesville, Florida, United States of America.

Department of Occupational Therapy, College of Public Health and Health Professions, University of Florida, Gainesville, Florida, United States of America.

出版信息

PLoS One. 2025 Mar 19;20(3):e0319396. doi: 10.1371/journal.pone.0319396. eCollection 2025.

Abstract

INTRODUCTION

Autistic people experience higher risk of suicidal ideation (SI) and suicide attempts (SA) compared to non-autistic people, yet there is limited understanding of complex, multilevel factors that drive this disparity. Further, determinants of mental health service receipt among this population are unknown. This study will identify socioecological factors associated with increased risk of SI and SA for autistic people and evaluate determinants of mental health care receipt.

METHODS

This study will link information for individuals aged 12-64 years in healthcare claims data (IBM® MarketScan® Research Database and CMS Medicaid) to publicly available databases containing community and policy factors, thereby creating a unique, multilevel dataset that includes health, demographic, community, and policy information. Machine learning data reduction methods will be applied to reduce the dimensionality prior to nested, multilevel empirical estimation. These techniques will allow for robust identification of clusters of socioecological factors associated with 1) risk of SI and SA and 2) receipt of mental health services (type, dose, delivery modality). Throughout, the research team will partner with an established group of autistic partners to promote community relevance, as well as receive input and guidance from a council of policy and practice advisors.

DISCUSSION

We hypothesize that nested individual (co-occurring conditions, age, sex), community (healthcare availability, social vulnerabilities), and policy factors (state mental health legislation, state Medicaid expansion) will be associated with heightened risk of SI and SA, and that receipt, dose, and delivery of mental health services will be associated with interdependent factors at all three levels. The approach will lead to identification of multilevel clusters of risk and factors that facilitate or impede mental health service delivery. The study team will then engage the community partners, and policy and practice advisors to inform development of recommendations to reduce risk and improve mental health for the autistic population.

摘要

引言

与非自闭症患者相比,自闭症患者有更高的自杀意念(SI)和自杀未遂(SA)风险,但对于导致这种差异的复杂、多层次因素的了解有限。此外,这一人群接受心理健康服务的决定因素尚不清楚。本研究将确定与自闭症患者SI和SA风险增加相关的社会生态因素,并评估接受心理健康护理的决定因素。

方法

本研究将把医疗保健索赔数据(IBM® MarketScan® 研究数据库和医疗保险与医疗补助服务中心(CMS)的医疗补助数据)中12至64岁个体的信息与包含社区和政策因素的公开可用数据库相链接,从而创建一个独特的多层次数据集,其中包括健康、人口统计学、社区和政策信息。在进行嵌套的多层次实证估计之前,将应用机器学习数据约简方法来降低维度。这些技术将有助于可靠地识别与以下两方面相关的社会生态因素集群:1)SI和SA风险;2)心理健康服务的接受情况(类型、剂量、提供方式)。在整个研究过程中,研究团队将与一群既定的自闭症伙伴合作,以提高社区相关性,并从政策和实践顾问委员会获得意见和指导。

讨论

我们假设,嵌套的个体因素(共病情况、年龄、性别)、社区因素(医疗保健可及性、社会脆弱性)和政策因素(州心理健康立法、州医疗补助扩展)将与SI和SA风险增加相关,并且心理健康服务的接受、剂量和提供将与所有三个层面的相互依存因素相关。该方法将有助于识别风险的多层次集群以及促进或阻碍心理健康服务提供的因素。然后,研究团队将与社区伙伴以及政策和实践顾问合作,为制定降低风险和改善自闭症人群心理健康的建议提供信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4b26/11922293/1ad6fdb26484/pone.0319396.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验