Mich John K, Ryu Jiyun, Wei Aguan D, Gore Bryan B, Guo Rong, Bard Angela M, Martinez Refugio A, Luber Emily M, Liu Jiatai, Bishaw Yemeserach M, Christian Robert J, Oliveira Luiz M, Miranda Nicole, Ramirez Jan-Marino, Ting Jonathan T, Lein Ed S, Levi Boaz P, Kalume Franck K
Allen Institute for Brain Science, Seattle, WA 98109, USA.
Seattle Children's Research Institute, Seattle, WA 98101, USA.
Sci Transl Med. 2025 Mar 19;17(790):eadn5603. doi: 10.1126/scitranslmed.adn5603.
Dravet syndrome (DS) is a severe developmental epileptic encephalopathy marked by treatment-resistant seizures, developmental delay, intellectual disability, motor deficits, and a 10 to 20% rate of premature death. Most patients with DS harbor loss-of-function mutations in one copy of , which encodes the voltage-gated sodium channel (Na)1.1 alpha subunit and has been associated with inhibitory neuron dysfunction. Here, we generated a split-intein form of and used a dual-vector delivery approach to circumvent adeno-associated virus (AAV) packaging limitations. In addition, we applied previously developed enhancer technology to produce an interneuron-specific gene replacement therapy for DS, called DLX2.0-. The split-intein vectors produced full-length Na1.1 protein, and functional sodium channels were recorded in HEK293 cells in vitro. Administration of dual DLX2.0- AAVs to wild-type mice produced full-length, reconstituted human protein by Western blot and telencephalic interneuron-specific and dose-dependent Na1.1 expression by immunohistochemistry. These vectors also conferred strong dose-dependent protection against postnatal mortality and seizures in and DS mouse models. Injection of single or dual DLX2.0- AAVs into wild-type mice did not result in increased mortality, weight loss, or gliosis as measured by immunohistochemistry. In contrast, expression of in all neurons driven by the human promoter caused an adverse effect marked by increased mortality in the preweaning period, before disease onset. These findings demonstrate proof of concept that interneuron-specific AAV-mediated gene replacement can rescue DS phenotypes in mouse models and suggest that it could be a therapeutic approach for patients with DS.
德雷维特综合征(DS)是一种严重的发育性癫痫性脑病,其特征为耐药性癫痫发作、发育迟缓、智力残疾、运动功能障碍以及10%至20%的过早死亡率。大多数DS患者在编码电压门控钠通道(Na)1.1α亚基的基因的一个拷贝中存在功能丧失突变,该亚基与抑制性神经元功能障碍有关。在此,我们构建了一种分裂内含肽形式的该基因,并采用双载体递送方法来规避腺相关病毒(AAV)的包装限制。此外,我们应用先前开发的增强子技术,为DS开发了一种称为DLX2.0-的中间神经元特异性基因替代疗法。分裂内含肽载体产生了全长的Na1.1蛋白,并且在体外的HEK293细胞中记录到了功能性钠通道。将双DLX2.0-AAV注射到野生型小鼠体内,通过蛋白质印迹法产生了全长的、重组的人类蛋白,通过免疫组织化学法在端脑中间神经元中实现了特异性且剂量依赖性的Na1.1表达。这些载体还在相关的DS小鼠模型中对出生后死亡率和癫痫发作提供了强大的剂量依赖性保护。将单剂量或双剂量的DLX2.0-AAV注射到野生型小鼠体内,通过免疫组织化学检测,未导致死亡率增加、体重减轻或胶质增生。相比之下,由人类启动子驱动在所有神经元中表达该基因,在疾病发作前的断奶前期导致了以死亡率增加为特征的不良影响。这些发现证明了中间神经元特异性AAV介导的基因替代可以挽救小鼠模型中的DS表型这一概念,并表明这可能是DS患者的一种治疗方法。