Suppr超能文献

通过针对核磁共振确定的催化热点进行计算稳定性设计来增强酶活性

Enzyme Enhancement Through Computational Stability Design Targeting NMR-Determined Catalytic Hotspots.

作者信息

Gutierrez-Rus Luis I, Vos Eva, Pantoja-Uceda David, Hoffka Gyula, Gutierrez-Cardenas Jose, Ortega-Muñoz Mariano, Risso Valeria A, Jimenez Maria Angeles, Kamerlin Shina C L, Sanchez-Ruiz Jose M

机构信息

Departamento de Química Física, Facultad de Ciencias, Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente (UEQ), Universidad de Granada, Granada 18071, Spain.

School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States.

出版信息

J Am Chem Soc. 2025 May 7;147(18):14978-14996. doi: 10.1021/jacs.4c09428. Epub 2025 Mar 19.

Abstract

Enzymes are the quintessential green catalysts, but realizing their full potential for biotechnology typically requires improvement of their biomolecular properties. Catalysis enhancement, however, is often accompanied by impaired stability. Here, we show how the interplay between activity and stability in enzyme optimization can be efficiently addressed by coupling two recently proposed methodologies for guiding directed evolution. We first identify catalytic hotspots from chemical shift perturbations induced by transition-state-analogue binding and then use computational/phylogenetic design (FuncLib) to predict stabilizing combinations of mutations at sets of such hotspots. We test this approach on a previously designed de novo Kemp eliminase, which is already highly optimized in terms of both activity and stability. Most tested variants displayed substantially increased denaturation temperatures and purification yields. Notably, our most efficient engineered variant shows a ∼3-fold enhancement in activity ( ∼ 1700 s, / ∼ 4.3 × 10 M s) from an already heavily optimized starting variant, resulting in the most proficient proton-abstraction Kemp eliminase designed to date, with a catalytic efficiency on a par with naturally occurring enzymes. Molecular simulations pinpoint the origin of this catalytic enhancement as being due to the progressive elimination of a catalytically inefficient substrate conformation that is present in the original design. Remarkably, interaction network analysis identifies a significant fraction of catalytic hotspots, thus providing a computational tool which we show to be useful even for natural-enzyme engineering. Overall, our work showcases the power of dynamically guided enzyme engineering as a design principle for obtaining novel biocatalysts with tailored physicochemical properties, toward even anthropogenic reactions.

摘要

酶是典型的绿色催化剂,但要实现其在生物技术领域的全部潜力,通常需要改善其生物分子特性。然而,催化活性的增强往往伴随着稳定性的受损。在这里,我们展示了如何通过结合两种最近提出的用于指导定向进化的方法,有效地解决酶优化过程中活性与稳定性之间的相互作用问题。我们首先从过渡态类似物结合引起的化学位移扰动中识别出催化热点,然后使用计算/系统发育设计(FuncLib)来预测这些热点处突变的稳定组合。我们在先前设计的全新 Kemp 消除酶上测试了这种方法,该酶在活性和稳定性方面已经高度优化。大多数测试变体的变性温度和纯化产率都有显著提高。值得注意的是,我们最有效的工程变体在已经经过大量优化的起始变体基础上,活性提高了约 3 倍(约 1700 s⁻¹ /约 4.3×10⁻⁵ M⁻¹ s⁻¹),从而产生了迄今为止设计最熟练的质子抽取 Kemp 消除酶,其催化效率与天然酶相当。分子模拟指出这种催化增强的起源是由于逐步消除了原始设计中存在的催化效率低下的底物构象。值得注意的是,相互作用网络分析识别出了很大一部分催化热点,从而提供了一种计算工具,我们证明它甚至对天然酶工程也很有用。总体而言,我们的工作展示了动态指导酶工程作为一种设计原则的力量,用于获得具有定制物理化学性质的新型生物催化剂,甚至用于人为反应。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9374/12151457/a29f074a97f7/ja4c09428_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验