Zhou Qingqing, Li Chuyang, Wang Bin, Ding Wenwei, Lu Junjie, Sheng Bifu, Li Wei, Zhu Wenjuan, Ni Qian, Han Xiang
College of Materials Science and Engineering, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, Jiangsu, China.
College of Materials Science and Engineering, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, Jiangsu, China.
J Colloid Interface Sci. 2025 Jul 15;690:137302. doi: 10.1016/j.jcis.2025.137302. Epub 2025 Mar 15.
Polyethylene oxide (PEO)-based solid-state batteries have attracted extensive attention due to their scalable processing, flexible and soft interface contact, and excellent compatibility with lithium metal. The low ionic conductivity at room temperature, caused by the strong interaction between PEO chains and lithium ions, however, limits its practical application. Herein, taking the PEO-PAN dual-matrix polymer electrolyte as an example, a weak coordinated solvation structure is enabled by fluoroethylene carbonate (FEC) as a co-solvent during electrolyte preparation. The tiny residual FEC is demonstrated to weaken the interaction between lithium ions and PEO chains while competitively dissociating lithium salts with the residual solvent and anions. In addition, the incorporation of FEC enhances the dispersion of LATP nanoparticle fillers, which reduces the crystallinity of PEO. Furthermore, the anion-derived LiF-rich solid-electrolyte interphase significantly suppresses the formation of lithium dendrites. Consequently, the prepared PEO-PAN-LATP-LiTFSI-5 % FEC (PPLLF) composite solid polymer exhibits an ambient ionic conductivity of ∼ 1 × 10 S cm and enables stable cycling for over 450 h in a Li||Li symmetrical battery at room temperature. The assembled Li|PPLLF|LFP full battery delivers a specific capacity of 137.6 mAh/g after 300 cycles at 0.2C, further demonstrating the effectiveness of the solvation manipulation strategy.
基于聚环氧乙烷(PEO)的固态电池因其可扩展加工、柔性和软界面接触以及与锂金属的优异兼容性而受到广泛关注。然而,由于PEO链与锂离子之间的强相互作用导致室温下离子电导率较低,限制了其实际应用。在此,以PEO-PAN双基质聚合物电解质为例,在电解质制备过程中,通过使用碳酸氟乙烯酯(FEC)作为共溶剂形成了弱配位溶剂化结构。结果表明,微量残留的FEC会削弱锂离子与PEO链之间的相互作用,同时与残留溶剂和阴离子竞争性地离解锂盐。此外,FEC的加入增强了LATP纳米颗粒填料的分散性,降低了PEO的结晶度。此外,阴离子衍生的富含LiF的固体电解质界面显著抑制了锂枝晶的形成。因此,制备的PEO-PAN-LATP-LiTFSI-5%FEC(PPLLF)复合固体聚合物在室温下的离子电导率约为1×10 S cm,并且在Li||Li对称电池中能够稳定循环超过450小时。组装的Li|PPLLF|LFP全电池在0.2C下300次循环后比容量为137.6 mAh/g,进一步证明了溶剂化调控策略的有效性。