Batianis Christos, van Rosmalen Rik P, Moñino Fernández Pedro, Labanaris Konstantinos, Asin-Garcia Enrique, Martin-Pascual Maria, Jeschek Markus, Weusthuis Ruud A, Suarez-Diez Maria, Martins Dos Santos Vitor A P
Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, 6708 WE, the Netherlands; Bioprocess Engineering, Wageningen University & Research, Wageningen, 6708 PB, the Netherlands.
Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, 6708 WE, the Netherlands.
Metab Eng. 2025 Jul;90:165-177. doi: 10.1016/j.ymben.2025.03.008. Epub 2025 Mar 17.
Malonyl-CoA is the major precursor for the biosynthesis of diverse industrially valuable products such as fatty acids/alcohols, flavonoids, and polyketides. However, its intracellular availability is limited in most microbial hosts, hampering the industrial production of such chemicals. To address this limitation, we present a multilevel optimization workflow using modern metabolic engineering technologies to systematically increase the malonyl-CoA levels in Pseudomonas putida. The workflow involves the identification of gene downregulations, chassis selection, and optimization of the acetyl-CoA carboxylase complex through ribosome binding site engineering. Computational tools and high-throughput screening with a malonyl-CoA biosensor enabled the rapid evaluation of numerous genetic targets. Combining the most beneficial targets led to a 5.8-fold enhancement in the production titer of the valuable polyketide phloroglucinol. This study demonstrates the effective integration of computational and genetic technologies for engineering P. putida, opening new avenues for the development of industrially relevant strains and the investigation of fundamental biological questions.
丙二酰辅酶A是多种具有工业价值的产品生物合成的主要前体,如脂肪酸/醇类、类黄酮和聚酮化合物。然而,在大多数微生物宿主中,其细胞内的可利用性有限,这阻碍了此类化学品的工业化生产。为了解决这一限制,我们提出了一种使用现代代谢工程技术的多层次优化工作流程,以系统地提高恶臭假单胞菌中丙二酰辅酶A的水平。该工作流程包括基因下调的鉴定、底盘选择以及通过核糖体结合位点工程对乙酰辅酶A羧化酶复合物进行优化。计算工具和使用丙二酰辅酶A生物传感器的高通量筛选能够快速评估众多遗传靶点。结合最有益的靶点,使得有价值的聚酮化合物间苯三酚的生产滴度提高了5.8倍。这项研究证明了计算技术和遗传技术在工程改造恶臭假单胞菌中的有效整合,为开发与工业相关的菌株以及研究基本生物学问题开辟了新途径。