Anaya Brayan J, Kara Aytug, Raposo Rafaela, Tirado Diego F, Lalatsa Aikaterini, González-Burgos Elena, Serrano Dolores R
Pharmaceutics and Food Technology Department, Faculty of Pharmacy, Universidad Complutense de Madrid, Plaza RamónSpain y Cajal s/n, 28040 Madrid, Spain.
Sección Departamental de Fisiología, Faculty of Pharmacy, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain.
Int J Pharm. 2025 Apr 15;674:125493. doi: 10.1016/j.ijpharm.2025.125493. Epub 2025 Mar 17.
Pulmonary drug delivery is crucial for treating respiratory diseases, requiring precise particle engineering for optimal therapeutic efficacy. This study demonstrates a novel integration of 3D-printed microfluidic micromixers with spray drying technology to produce inhalable azithromycin (AZM) microparticles targeting lung delivery. The formulation demonstrated effective deep lung deposition at both 30 L/min and 60 L/min flow rates. At 30 L/min, AZM-loaded microparticles achieved enhanced performance with 1.2-fold higher Fine Particle Fraction (FPF) < 5 µm and 1.4-fold higher FPF < 3 µm compared to 60 L/min. Microparticles (25 mg) can deliver an efficacious dose of AZM to the lung, exceeding the reported epidemiological cut-off for Haemophilus influenzae (4 mg/L) by approximately five-fold while maintaining high human bronchial epithelial cell viability (> 94 %). The antibacterial efficacy against H. influenzae was confirmed, demonstrating the therapeutic potential against lung pathogens. The successful deep lung deposition at both air flow rates reflects the robustness of the formulation design, making it suitable for diverse patient populations with varying inspiratory capabilities, including children and elderly patients.
肺部给药对于治疗呼吸道疾病至关重要,需要精确的颗粒工程以实现最佳治疗效果。本研究展示了一种将3D打印微流控微混合器与喷雾干燥技术新颖结合的方法,用于制备靶向肺部递送的可吸入阿奇霉素(AZM)微粒。该制剂在30 L/min和60 L/min的流速下均显示出有效的肺部深部沉积。在30 L/min时,与60 L/min相比,载有AZM的微粒表现出增强的性能,细颗粒分数(FPF)<5 µm提高了1.2倍,FPF <3 µm提高了1.4倍。微粒(25 mg)可将有效剂量的AZM递送至肺部,超过报告的流感嗜血杆菌流行病学临界值(4 mg/L)约五倍,同时保持较高的人支气管上皮细胞活力(> 94%)。证实了对流感嗜血杆菌的抗菌效果,证明了其对肺部病原体的治疗潜力。在两种气流速度下均成功实现肺部深部沉积,反映了制剂设计的稳健性,使其适用于包括儿童和老年患者在内的具有不同吸气能力的各种患者群体。