Wei Xingyao, Chu Fuhao, Wang Weiguang, Zhang Qiaohong, Hao Dongmei, Zhu Zhiguo, Yang Kaixuan, Chen Chen, Lü Hongying
College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, Shandong, China.
School of Material Science and Chemical Engineering, Ningbo University, 818 Fenghua Road, Ningbo, 315211, China.
ChemSusChem. 2025 Jun 17;18(12):e202402589. doi: 10.1002/cssc.202402589. Epub 2025 Apr 4.
Selective oxidation of 5-hydroxymethylfurfural (HMF) to 2,5-furandicarboxylic acid (FDCA) has long been a formidable challenge under mild conditions. Deep eutectic solvents (DESs) have shown remarkable efficiency in the oxidation of HMF as a sustainable solvent. These solvents not only enhance solubilization but also activate biomass-derived hydroxyl compounds via hydrogen bonds reconstruction. This study leverages the architecture and functionality of natural enzymes and coenzymes in the respiratory chain system to develop a unique biomimetic catalytic system. In this system, HMF is oxidized to FDCA in imidazole-based DESs with polyoxometalates as catalyst and para-benzoquinone as electron transfer mediators. The findings demonstrate that the adjustment of hydrogen bond acceptor (HBA) or hydrogen bond donor (HBD) enables precise control over the hydrogen bond strength in DESs, thereby accurately regulating the distribution of HMF oxidation products. Furthermore, the optimization of hydrogen bond strength can also activate the OH bond in HMF, consequently expediting the oxidation reaction. The cyclic voltammetry measurements provide compelling evidence of dioxygen activation and efficient electron transferring in a biomimetic catalytic system, resulting in a remarkable 21-fold increase in current density. This research not only advances utilization and development of biomass resources but also offers novel perspectives into constructing efficient catalytic oxidation systems.
在温和条件下,将5-羟甲基糠醛(HMF)选择性氧化为2,5-呋喃二甲酸(FDCA)长期以来一直是一项艰巨的挑战。深共熔溶剂(DESs)作为一种可持续的溶剂,在HMF的氧化反应中表现出显著的效率。这些溶剂不仅能增强溶解性,还能通过氢键重构激活生物质衍生的羟基化合物。本研究利用呼吸链系统中天然酶和辅酶的结构与功能,开发了一种独特的仿生催化体系。在该体系中,以多金属氧酸盐为催化剂、对苯醌为电子转移介质,在咪唑基DESs中将HMF氧化为FDCA。研究结果表明,通过调整氢键受体(HBA)或氢键供体(HBD),可以精确控制DESs中的氢键强度,从而准确调节HMF氧化产物的分布。此外,优化氢键强度还可以激活HMF中的OH键,从而加快氧化反应。循环伏安法测量结果有力地证明了仿生催化体系中双氧的活化和高效电子转移,电流密度显著提高了21倍。本研究不仅推动了生物质资源的利用和开发,还为构建高效催化氧化体系提供了新的视角。