Zanframundo Giovanni, Dourado Eduardo, Bauer-Ventura Iazsmin, Faghihi-Kashani Sara, Yoshida Akira, Loganathan Aravinthan, Rivero-Gallegos Daphne, Lim Darosa, Bozán Francisca, Sambataro Gianluca, Bae Sangmee Sharon, Yamano Yasuhiko, Bonella Francesco, Corte Tamera J, Doyle Tracy Jennifer, Fiorentino David, Gonzalez-Gay Miguel Angel, Hudson Marie, Kuwana Masataka, Lundberg Ingrid E, Mammen Andrew, McHugh Neil, Miller Frederick W, Montecucco Carlomaurizio, Oddis Chester V, Rojas-Serrano Jorge, Schmidt Jens, Selva-O'Callaghan Albert, Werth Victoria P, Hansen Paul, Rozza Davide, Scirè Carlo A, Sakellariou Garifallia, Kaneko Yuko, Triantafyllias Konstantinos, Castañeda Santos, Alberti Maria Laura, Merino Martín Gerardo Greco, Fiehn Christopher, Molad Yair, Govoni Marcello, Nakashima Ran, Alpsoy Erkan, Giannini Margherita, Chinoy Hector, Gallay Laure, Ebstein Esther, Campagne Julien, Saraiva André Pinto, Conticini Edoardo, Sebastiani Gian Domenico, Nuño-Nuño Laura, Scarpato Salvatore, Schiopu Elena, Parker Matthew, Limonta Massimiliano, Cavagna Lorenzo, Aggarwal Rohit
Department of Internal Medicine and Therapeutics, Università di Pavia, Pavia, Italy; Division of Rheumatology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.
Rheumatology Department, Unidade Local de Saúde da Região de Aveiro, Aveiro, Portugal; Aveiro Rheumatology Research Centre, Egas Moniz Health Alliance, Aveiro, Portugal; Rheumatology Research Unit, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.
Ann Rheum Dis. 2025 Mar 18. doi: 10.1016/j.ard.2025.01.050.
To develop and evaluate the performance of multicriteria decision analysis (MCDA)-driven candidate classification criteria for antisynthetase syndrome (ASSD).
A list of variables associated with ASSD was developed using a systematic literature review and then refined into an ASSD key domains and variables list by myositis and interstitial lung disease (ILD) experts. This list was used to create preferences surveys in which experts were presented with pairwise comparisons of clinical vignettes and asked to select the case that was more likely to represent ASSD. Experts' answers were analysed using the Potentially All Pairwise RanKings of all possible Alternatives method to determine the weights of the key variables to formulate the MCDA-based classification criteria. Clinical vignettes scored by the experts as consensus cases or controls and real-world data collected in participating centres were used to test the performance of candidate classification criteria using receiver operating characteristic curves and diagnostic accuracy metrics.
Positivity for antisynthetase antibodies had the highest weight for ASSD classification. The highest-ranked clinical manifestation was ILD, followed by myositis, mechanic's hands, joint involvement, inflammatory rashes, Raynaud phenomenon, fever, and pulmonary hypertension. The candidate classification criteria achieved high areas under the curve when applied to the consensus cases and controls and real-world patient data. Sensitivities, specificities, and positive and negative predictive values were >80%.
The MCDA-driven candidate classification criteria were consistent with published ASSD literature and yielded high accuracy and validity.
制定并评估多标准决策分析(MCDA)驱动的抗合成酶综合征(ASSD)候选分类标准的性能。
通过系统的文献综述制定了一份与ASSD相关的变量清单,然后由肌炎和间质性肺病(ILD)专家将其细化为ASSD关键领域和变量清单。该清单用于创建偏好调查,向专家展示临床病例的两两比较,并要求他们选择更可能代表ASSD的病例。使用所有可能替代方案的潜在所有两两排序方法分析专家的答案,以确定关键变量的权重,从而制定基于MCDA的分类标准。将专家评为共识病例或对照的临床病例以及参与中心收集的真实世界数据用于通过受试者工作特征曲线和诊断准确性指标来测试候选分类标准的性能。
抗合成酶抗体阳性在ASSD分类中权重最高。排名最高的临床表现是ILD,其次是肌炎、技工手、关节受累、炎性皮疹、雷诺现象、发热和肺动脉高压。当将候选分类标准应用于共识病例、对照和真实世界患者数据时,曲线下面积较高。敏感性、特异性以及阳性和阴性预测值均>80%。
MCDA驱动的候选分类标准与已发表的ASSD文献一致,具有较高的准确性和有效性。