Suppr超能文献

结合蚁群优化算法和动态窗口算法的机器人全局与局部路径规划

Global and local path planning of robots combining ACO and dynamic window algorithm.

作者信息

Lu Yaping, Da Chen

机构信息

Applied Technology College, Soochow University, Suzhou, 215325, China.

出版信息

Sci Rep. 2025 Mar 19;15(1):9452. doi: 10.1038/s41598-025-93571-8.

Abstract

As a key technology, robot path planning is of great significance in safely and efficiently completing tasks. However, faced with the challenges of static and dynamic obstacles in complex environments, traditional path planning methods have limitations in terms of efficiency and adaptability. Therefore, a global and local path planning method combining improved ant colony algorithm and improved dynamic window algorithm is proposed. The optimization ability, convergence efficiency, and obstacle avoidance performance are optimized in complex environments. The innovation is reflected in the proposed cone pheromone initialization, adaptive heuristic factor regulation, and ant colony division of labor strategies, which improve the global search ability and convergence speed of ant colony algorithm. In addition, the path direction angle evaluation function and dynamic velocity sampling optimization are introduced to enhance the obstacle avoidance stability of dynamic window algorithm. The research results showed that the optimization method had the greatest improvement on the basic ant colony algorithm, with an average path reduction of 30.18 and an accuracy increase of 98.46%. In a 2020 grid map, the improved strategy achieved convergence in the 23rd iteration, with an average path length of only 25.87 during convergence. In a 3030 grid map, the improved method converged in the 81st iteration, and the path length at convergence was 41.03. In the designed four environments, the smoothness was 0.94, 0.91, 0.79, and 0.65, all of which were better than comparison algorithms. The designed method based on improved dynamic window algorithm can effectively avoid dynamic obstacles. The research not only improves the efficiency and robustness of the path planning algorithm, but also improves the autonomous navigation ability of robots in complex environments, providing more adaptive path planning schemes for industrial automation, service robots, exploration robots and other fields.

摘要

作为一项关键技术,机器人路径规划对于安全、高效地完成任务具有重要意义。然而,面对复杂环境中静态和动态障碍物的挑战,传统路径规划方法在效率和适应性方面存在局限性。因此,提出了一种将改进蚁群算法和改进动态窗口算法相结合的全局和局部路径规划方法。在复杂环境中对优化能力、收敛效率和避障性能进行了优化。创新之处体现在所提出的锥形信息素初始化、自适应启发式因子调节和蚁群分工策略上,这些策略提高了蚁群算法的全局搜索能力和收敛速度。此外,引入路径方向角评估函数和动态速度采样优化,以增强动态窗口算法的避障稳定性。研究结果表明,该优化方法对基本蚁群算法的改进最大,平均路径减少30.18,精度提高98.46%。在20×20网格地图中,改进策略在第23次迭代时收敛,收敛过程中的平均路径长度仅为25.87。在30×30网格地图中,改进方法在第81次迭代时收敛,收敛时的路径长度为41.03。在所设计的四种环境中,平滑度分别为0.94、0.91、0.79和0.65,均优于对比算法。所设计的基于改进动态窗口算法的方法能够有效避开动态障碍物。该研究不仅提高了路径规划算法的效率和鲁棒性,还提高了机器人在复杂环境中的自主导航能力,为工业自动化、服务机器人、探索机器人等领域提供了更具适应性的路径规划方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0ac5/11923277/d65d09c45809/41598_2025_93571_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验