Suppr超能文献

PoseRL-Net:基于机器人视觉引导的运动训练人体姿态分析

PoseRL-Net: human pose analysis for motion training guided by robot vision.

作者信息

Liu Bin, Wang Hui

机构信息

Department of Physical Education, College of Education, Shanghai Jianqiao University, Shanghai, China.

出版信息

Front Neurorobot. 2025 Mar 5;19:1531894. doi: 10.3389/fnbot.2025.1531894. eCollection 2025.

Abstract

OBJECTIVE

To address the limitations of traditional methods in human pose recognition, such as occlusions, lighting variations, and motion continuity, particularly in complex dynamic environments for seamless human-robot interaction.

METHOD

We propose PoseRL-Net, a deep learning-based pose recognition model that enhances accuracy and robustness in human pose estimation. PoseRL-Net integrates multiple components, including a Spatial-Temporal Graph Convolutional Network (STGCN), attention mechanism, Gated Recurrent Unit (GRU) module, pose refinement, and symmetry constraints. The STGCN extracts spatial and temporal features, the attention mechanism focuses on key pose features, the GRU ensures temporal consistency, and the refinement and symmetry constraints improve structural plausibility and stability.

RESULTS

Extensive experiments conducted on the Human3.6M and MPI-INF-3DHP datasets demonstrate that PoseRL-Net outperforms existing state-of-the-art models on key metrics such as MPIPE and P-MPIPE, showcasing superior performance across various pose recognition tasks.

CONCLUSION

PoseRL-Net not only improves pose estimation accuracy but also provides crucial support for intelligent decision-making and motion planning in robots operating in dynamic and complex scenarios, offering significant practical value for collaborative robotics.

摘要

目的

解决传统人体姿态识别方法在诸如遮挡、光照变化和运动连续性等方面的局限性,特别是在复杂动态环境中实现无缝人机交互。

方法

我们提出了PoseRL-Net,这是一种基于深度学习的姿态识别模型,可提高人体姿态估计的准确性和鲁棒性。PoseRL-Net集成了多个组件,包括时空图卷积网络(STGCN)、注意力机制、门控循环单元(GRU)模块、姿态细化和对称约束。STGCN提取时空特征,注意力机制聚焦于关键姿态特征,GRU确保时间一致性,细化和对称约束提高结构合理性和稳定性。

结果

在Human3.6M和MPI-INF-3DHP数据集上进行的大量实验表明,PoseRL-Net在诸如MPIPE和P-MPIPE等关键指标上优于现有的最先进模型,在各种姿态识别任务中展现出卓越性能。

结论

PoseRL-Net不仅提高了姿态估计精度,还为在动态复杂场景中运行的机器人的智能决策和运动规划提供了关键支持,为协作机器人技术提供了重要的实用价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef38/11920136/8682589f7cc5/fnbot-19-1531894-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验