Liu Bin, Wang Hui
Department of Physical Education, College of Education, Shanghai Jianqiao University, Shanghai, China.
Front Neurorobot. 2025 Mar 5;19:1531894. doi: 10.3389/fnbot.2025.1531894. eCollection 2025.
To address the limitations of traditional methods in human pose recognition, such as occlusions, lighting variations, and motion continuity, particularly in complex dynamic environments for seamless human-robot interaction.
We propose PoseRL-Net, a deep learning-based pose recognition model that enhances accuracy and robustness in human pose estimation. PoseRL-Net integrates multiple components, including a Spatial-Temporal Graph Convolutional Network (STGCN), attention mechanism, Gated Recurrent Unit (GRU) module, pose refinement, and symmetry constraints. The STGCN extracts spatial and temporal features, the attention mechanism focuses on key pose features, the GRU ensures temporal consistency, and the refinement and symmetry constraints improve structural plausibility and stability.
Extensive experiments conducted on the Human3.6M and MPI-INF-3DHP datasets demonstrate that PoseRL-Net outperforms existing state-of-the-art models on key metrics such as MPIPE and P-MPIPE, showcasing superior performance across various pose recognition tasks.
PoseRL-Net not only improves pose estimation accuracy but also provides crucial support for intelligent decision-making and motion planning in robots operating in dynamic and complex scenarios, offering significant practical value for collaborative robotics.
解决传统人体姿态识别方法在诸如遮挡、光照变化和运动连续性等方面的局限性,特别是在复杂动态环境中实现无缝人机交互。
我们提出了PoseRL-Net,这是一种基于深度学习的姿态识别模型,可提高人体姿态估计的准确性和鲁棒性。PoseRL-Net集成了多个组件,包括时空图卷积网络(STGCN)、注意力机制、门控循环单元(GRU)模块、姿态细化和对称约束。STGCN提取时空特征,注意力机制聚焦于关键姿态特征,GRU确保时间一致性,细化和对称约束提高结构合理性和稳定性。
在Human3.6M和MPI-INF-3DHP数据集上进行的大量实验表明,PoseRL-Net在诸如MPIPE和P-MPIPE等关键指标上优于现有的最先进模型,在各种姿态识别任务中展现出卓越性能。
PoseRL-Net不仅提高了姿态估计精度,还为在动态复杂场景中运行的机器人的智能决策和运动规划提供了关键支持,为协作机器人技术提供了重要的实用价值。