Suppr超能文献

一种在样本信息期望值的高斯近似中估计有效样本量的非参数方法。

A Nonparametric Approach for Estimating the Effective Sample Size in Gaussian Approximation of Expected Value of Sample Information.

作者信息

Li Linke, Jalal Hawre, Heath Anna

机构信息

Dalla Lana School of Public Health, University of Toronto, Toronto, Canada.

Child Health Evaluative Sciences, The Hospital for Sick Children, Toronto, Canada.

出版信息

Med Decis Making. 2025 May;45(4):370-375. doi: 10.1177/0272989X251324936. Epub 2025 Mar 20.

Abstract

The effective sample size (ESS) measures the informational value of a probability distribution in terms of an equivalent number of study participants. The ESS plays a crucial role in estimating the expected value of sample information (EVSI) through the Gaussian approximation approach. Despite the significance of ESS, except for a limited number of scenarios, existing ESS estimation methods within the Gaussian approximation framework are either computationally expensive or potentially inaccurate. To address these limitations, we propose a novel approach that estimates the ESS using the summary statistics of generated datasets and nonparametric regression methods. The simulation experiments suggest that the proposed method provides accurate ESS estimates at a low computational cost, making it an efficient and practical way to quantify the information contained in the probability distribution of a parameter. Overall, determining the ESS can help analysts understand the uncertainty levels in complex prior distributions in the probability analyses of decision models and perform efficient EVSI calculations.HighlightsEffective sample size (ESS) quantifies the informational value of probability distributions, essential for calculating the expected value of sample information (EVSI) using the Gaussian approximation approach. However, current ESS estimation methods are limited by high computational demands and potential inaccuracies.We propose a novel ESS estimation method that uses summary statistics and nonparametric regression models to efficiently and accurately estimate ESS.The effectiveness and accuracy of our method are validated through simulations, demonstrating significant improvements in computational efficiency and estimation accuracy.

摘要

有效样本量(ESS)根据等效的研究参与者数量来衡量概率分布的信息价值。ESS在通过高斯近似法估计样本信息的期望值(EVSI)方面起着关键作用。尽管ESS很重要,但除了少数情况外,高斯近似框架内现有的ESS估计方法要么计算成本高昂,要么可能不准确。为了解决这些局限性,我们提出了一种新颖的方法,该方法使用生成数据集的汇总统计量和非参数回归方法来估计ESS。模拟实验表明,所提出的方法以低计算成本提供了准确的ESS估计,使其成为量化参数概率分布中所含信息的一种有效且实用的方法。总体而言,确定ESS有助于分析师在决策模型的概率分析中理解复杂先验分布中的不确定性水平,并进行有效的EVSI计算。

要点

有效样本量(ESS)量化概率分布的信息价值,这对于使用高斯近似法计算样本信息的期望值(EVSI)至关重要。然而,当前的ESS估计方法受到高计算需求和潜在不准确性的限制。

我们提出了一种新颖的ESS估计方法,该方法使用汇总统计量和非参数回归模型来高效且准确地估计ESS。

我们方法的有效性和准确性通过模拟得到验证,表明在计算效率和估计准确性方面有显著提高。

相似文献

10
A Gaussian Approximation Approach for Value of Information Analysis.信息价值分析的高斯逼近方法。
Med Decis Making. 2018 Feb;38(2):174-188. doi: 10.1177/0272989X17715627. Epub 2017 Jul 22.

本文引用的文献

4
A Gaussian Approximation Approach for Value of Information Analysis.信息价值分析的高斯逼近方法。
Med Decis Making. 2018 Feb;38(2):174-188. doi: 10.1177/0272989X17715627. Epub 2017 Jul 22.
7
Determining the effective sample size of a parametric prior.确定参数先验的有效样本量。
Biometrics. 2008 Jun;64(2):595-602. doi: 10.1111/j.1541-0420.2007.00888.x. Epub 2007 Aug 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验