Ramírez-Quintero Juan Sebastián, Osorno-Quiroz Andres, Torres-Sepúlveda Walter, Mira-Agudelo Alejandro
Grupo de Óptica y Fotónica, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia.
Programa de Ingeniería de Software y Datos, Facultad de Ingeniería y Ciencias Agropecuarias, Institución Universitaria Digital de Antioquia, Medellín, Colombia.
Sci Rep. 2025 Mar 20;15(1):9652. doi: 10.1038/s41598-024-80615-8.
Wavefront sensing is essential in visual optics for evaluating the optical quality in systems, such as the human visual system, and understanding its impact on visual performance. Although traditional methods like the Hartmann-Shack wavefront sensor (HSS) are widely employed, they face limitations in precision, dynamic range, and processing speed. Emerging deep learning technologies offer promising solutions to overcome these limitations. This paper presents a novel approach using a modified ResNet convolutional neural network (CNN) to enhance HSS performance. Experimental datasets, including noise-free and speckle noise-added images, were generated using a custom-made monocular visual simulator. The proposed CNN model exhibited superior accuracy in processing HSS images, significantly reducing wavefront aberration reconstruction time by 300% to 400% and increasing the dynamic range by 315.6% compared to traditional methods. Our results indicate that this approach substantially enhances wavefront sensing capabilities, offering a practical solution for applications in visual optics.
波前传感在视觉光学中对于评估诸如人类视觉系统等系统中的光学质量以及理解其对视觉性能的影响至关重要。尽管像哈特曼-夏克波前传感器(HSS)这样的传统方法被广泛应用,但它们在精度、动态范围和处理速度方面存在局限性。新兴的深度学习技术为克服这些局限性提供了有前景的解决方案。本文提出了一种使用改进的残差神经网络(CNN)来提高HSS性能的新方法。使用定制的单目视觉模拟器生成了包括无噪声和添加散斑噪声的图像在内的实验数据集。与传统方法相比,所提出的CNN模型在处理HSS图像时表现出卓越的准确性,将波前像差重建时间显著减少了300%至400%,并将动态范围提高了315.6%。我们的结果表明,这种方法大大增强了波前传感能力,为视觉光学中的应用提供了一种实用的解决方案。