Suppr超能文献

使用可穿戴设备定制抗癫痫治疗:失神癫痫的概念验证研究。

Tailoring antiseizure treatment with a wearable device: A proof-of-concept study in absence epilepsy.

作者信息

Macea Jaiver, Chatzichristos Christos, Bhagubai Miguel, De Vos Maarten, Van Paesschen Wim

机构信息

Laboratory for Epilepsy Research, Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium.

Department of Electrical Engineering, STADIUS Center for Dynamical Systems, Signal Processing, and Data Analytics, KU Leuven, Leuven, Belgium.

出版信息

Epilepsia. 2025 Jul;66(7):2295-2306. doi: 10.1111/epi.18384. Epub 2025 Mar 21.

Abstract

OBJECTIVE

Typical absence seizures are underreported. We aimed to improve patient care using a wearable electroencephalograph (wEEG) at home and assess a machine learning (ML) pipeline for absence detection.

METHODS

Patients with typical absences used a wEEG device 12-24 h 1 week after antiseizure medication (ASM) adjustments. Three-hertz generalized spike-wave discharges (SWDs) ≥ 3 s were used as absence surrogates. After manual inspection, we used the results to guide medical treatment. The outcomes were seizure freedom, number of consecutive measurements without relapse, and side effects. Afterward, we used the ML pipeline on the recordings, and a neurologist reviewed the output. Review time and diagnostic performance were compared with manual inspection.

RESULTS

Nineteen patients (12 female, median age = 24 years) were followed for a median of 5 months (range = 1-12). The median recording time for each session was 21.3 h (range = 10-24). Fifteen patients (79%) were seizure-free during the last measurement, including seven of 11 (63%) diagnosed with refractory epilepsy. Ten patients relapsed after a median of 1-2 recordings (range = 1-6) without 3-Hz SWDs. Side effects occurred in 21% of patients. Manual file inspection identified 806 3-Hz SWDs of ≥3 s. The ML pipeline reduced a neurologist's median review time for 24-h wEEG from 27 (range = 10-45) to 4.3 min (range = .1-10), with a sensitivity, precision, F1-score, and false positives per hour of .8, .95, .87, and .007, respectively.

SIGNIFICANCE

Home-based wEEG allows patient monitoring after ASM adjustments, improving absence seizure management. The ML-based pipeline performed well and was crucial in reducing review time.

摘要

目的

典型失神发作的报告不足。我们旨在通过在家使用可穿戴脑电图(wEEG)设备来改善患者护理,并评估用于失神检测的机器学习(ML)流程。

方法

典型失神发作患者在抗癫痫药物(ASM)调整1周后使用wEEG设备12 - 24小时。≥3秒的3赫兹广泛性棘慢波放电(SWD)被用作失神替代指标。经过人工检查后,我们使用结果来指导药物治疗。结果包括无癫痫发作、无复发的连续测量次数以及副作用。之后,我们在记录上使用ML流程,并且由一名神经科医生审查输出结果。将审查时间和诊断性能与人工检查进行比较。

结果

19名患者(12名女性,中位年龄 = 24岁)被随访了中位时间5个月(范围 = 1 - 12个月)。每次记录的中位时间为21.3小时(范围 = 10 - 24小时)。15名患者(79%)在最后一次测量时无癫痫发作,其中11名(63%)被诊断为难治性癫痫的患者中有7名。10名患者在中位1 - 2次记录(范围 = 1 - 6次)无3赫兹SWD后复发。21%的患者出现了副作用。人工文件检查识别出806次≥3秒的三赫兹SWD。ML流程将神经科医生对24小时wEEG的中位审查时间从27分钟(范围 = 10 - 45分钟)减少到4.3分钟(范围 = 0.1 - 10分钟),每小时的灵敏度、精确率、F1分数和假阳性率分别为0.8、0.95、0.87和0.007。

意义

基于家庭的wEEG允许在ASM调整后对患者进行监测,改善失神发作的管理。基于ML的流程表现良好,并且在减少审查时间方面至关重要。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验