Suppr超能文献

巴基斯坦开伯尔-普赫图赫瓦省空气污染与气象变量之间的时空协变性。

Spatiotemporal covariability between air pollution and meteorological variables over Khyber Pakhtunkhwa, Pakistan.

作者信息

Saeed Wirdhah, Tajbar Sapna, Ullah Zahid

机构信息

Department of Environmental Sciences, Allama Iqbal Open University, Islamabad, Pakistan.

出版信息

Environ Monit Assess. 2025 Mar 21;197(4):450. doi: 10.1007/s10661-025-13869-y.

Abstract

This study analyzed spatiotemporal covariability of O, SO, NO, CO, and PM with meteorological variables (rain precipitation rate, specific humidity, pressure, temperature, wind speed, latent heat flux, and solar radiation) using satellite data in Khyber Pakhtunkhwa province, Pakistan. Inverse Distance Weighted interpolation, ordinary least square regression, Pearson correlation, Generalized Linear, and Generalized Additive models were applied. Results revealed highest annual average pollutants as; NO₂ (3.87 ± 0.73) × 10 molecules/cm, PM (37.91 ± 17.75) µg/m, SO (6.81 ± 8.27) × 10, CO (1.34 ± 0.52) × 10 molecules/cm, and O (7.73 ± 0.10) × 10 molecules/cm. Seasonally NO peaked in summer and spring, SO₂ in autumn, CO in spring, PM in winter while O₃ in spring with minor seasonal variations. Annual spatial distribution of SO, PM, and CO were highest in central and southern areas while O in the central and NO in the central and southeastern. Wind speed was negatively correlated with NO annually and in winter, summer, and autumn. Temperature positively influenced NO and PM annually and seasonally, while O positively correlated with rain and specific humidity but negatively with solar radiation and temperature in spring. In autumn, O exhibited a positive association with rain and negative with solar radiation. SO indicated positive correlations with solar radiation annually and temperature in spring, while CO showed weak associations except for a positive correlation with specific humidity in summer. GAM models slightly better captured pollutant dynamics by explaining both linear and nonlinear relationships. These findings provide crucial insights for targeted air quality management strategies and pollutant mitigation.

摘要

本研究利用巴基斯坦开伯尔-普赫图赫瓦省的卫星数据,分析了O、SO、NO、CO和PM与气象变量(降雨率、比湿度、气压、温度、风速、潜热通量和太阳辐射)的时空协变性。应用了反距离加权插值法、普通最小二乘回归法、皮尔逊相关法、广义线性模型和广义相加模型。结果显示,年度平均污染物含量最高的分别为:NO₂(3.87±0.73)×10分子/立方厘米,PM(37.91±17.75)微克/立方米,SO(6.81±8.27)×10,CO(1.34±0.52)×10分子/立方厘米,以及O(7.73±0.10)×10分子/立方厘米。季节性方面,NO在夏季和春季达到峰值,SO₂在秋季,CO在春季,PM在冬季,而O₃在春季达到峰值,且季节性变化较小。SO、PM和CO的年度空间分布在中部和南部地区最高,而O在中部地区最高,NO在中部和东南部地区最高。风速与NO在年度以及冬季、夏季和秋季均呈负相关。温度对NO和PM在年度和季节上均有正向影响,而O在春季与降雨和比湿度呈正相关,但与太阳辐射和温度呈负相关。在秋季,O与降雨呈正相关,与太阳辐射呈负相关。SO在年度上与太阳辐射呈正相关,在春季与温度呈正相关,而CO除了在夏季与比湿度呈正相关外,其他关联较弱。广义相加模型通过解释线性和非线性关系,能更好地捕捉污染物动态。这些研究结果为有针对性的空气质量管理策略和污染物减排提供了关键见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验