Suppr超能文献

天然人类tRNA反密码子变体误译遗传密码。

Natural human tRNA anticodon variants mistranslate the genetic code.

作者信息

Tennakoon Rasangi, Bily Teija M I, Hasan Farah, Hoffman Kyle S, O'Donoghue Patrick

机构信息

Department of Biochemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada.

Bioinformatics Solutions, Inc., Waterloo, Ontario N2L 3K8, Canada.

出版信息

RNA. 2025 May 16;31(6):791-806. doi: 10.1261/rna.080450.125.

Abstract

Transfer RNAs (tRNAs) play an essential role in protein synthesis by linking the nucleic acid sequences of gene products to the amino acid sequences of proteins. There are >400 functional tRNA genes in humans, and adding to this diversity, there are many single-nucleotide polymorphisms in tRNAs across our population, including anticodon variants that mistranslate the genetic code. In human genomes, we identified three rare alanine tRNA (tRNA) variants with nonsynonymous anticodon mutations: tRNA G35T, tRNA G35A, and tRNA C36T. Since alanyl-tRNA synthetase (AlaRS) does not recognize the anticodon, we hypothesized that these tRNA variants will misincorporate Ala at glutamate (Glu), valine (Val), and threonine (Thr) codons, respectively. We found that expressing the naturally occurring tRNA variants in human cells led to defects in protein production without a substantial impact on cell growth. Using mass spectrometry, we confirmed and estimated Ala misincorporation levels at Glu (0.7%), Val (5%), and Thr (0.1%) codons. Although Ala misincorporation was higher at Val codons, cells misincorporating Ala at Glu codons had the most severe defect in protein production. The data demonstrate the ability of natural human tRNA variants to generate mistranslation, leading to defects in protein production that depend on the nature of the amino acid replacement.

摘要

转运RNA(tRNA)通过将基因产物的核酸序列与蛋白质的氨基酸序列相连接,在蛋白质合成中发挥着至关重要的作用。人类有超过400个功能性tRNA基因,而且在我们整个人口中,tRNA存在许多单核苷酸多态性,包括会错误翻译遗传密码的反密码子变体。在人类基因组中,我们鉴定出三种具有非同义反密码子突变的罕见丙氨酸tRNA变体:tRNA G35T、tRNA G35A和tRNA C36T。由于丙氨酰-tRNA合成酶(AlaRS)不识别反密码子,我们推测这些tRNA变体将分别在谷氨酸(Glu)、缬氨酸(Val)和苏氨酸(Thr)密码子处错误掺入丙氨酸。我们发现,在人类细胞中表达天然存在的tRNA变体导致蛋白质产生缺陷,但对细胞生长没有实质性影响。使用质谱法,我们确认并估计了在Glu(0.7%)、Val(5%)和Thr(0.1%)密码子处丙氨酸的错误掺入水平。虽然在Val密码子处丙氨酸的错误掺入更高,但在Glu密码子处错误掺入丙氨酸的细胞在蛋白质产生方面存在最严重的缺陷。数据证明了天然人类tRNA变体产生错误翻译的能力,导致取决于氨基酸替换性质的蛋白质产生缺陷。

相似文献

1
Natural human tRNA anticodon variants mistranslate the genetic code.
RNA. 2025 May 16;31(6):791-806. doi: 10.1261/rna.080450.125.
2
Perseverance of protein homeostasis despite mistranslation of glycine codons with alanine.
Philos Trans R Soc Lond B Biol Sci. 2023 Feb 27;378(1871):20220029. doi: 10.1098/rstb.2022.0029. Epub 2023 Jan 11.
3
tRNA allows four-way decoding with unmodified uridine at the wobble position in .
RNA. 2024 Nov 18;30(12):1608-1619. doi: 10.1261/rna.080155.124.
4
Anticodon sequence determines the impact of mistranslating tRNA variants.
RNA Biol. 2023 Jan;20(1):791-804. doi: 10.1080/15476286.2023.2257471. Epub 2023 Sep 30.
5
Anticodon stem-loop tRNA modifications influence codon decoding and frame maintenance during translation.
Semin Cell Dev Biol. 2024 Feb 15;154(Pt B):105-113. doi: 10.1016/j.semcdb.2023.06.003. Epub 2023 Jun 28.
6
Mistranslating the genetic code with leucine in yeast and mammalian cells.
RNA Biol. 2024 Jan;21(1):1-23. doi: 10.1080/15476286.2024.2340297. Epub 2024 Apr 17.
7
RNase L produces tRNA-derived RNAs that contribute to translation inhibition.
RNA. 2025 Jun 16;31(7):961-972. doi: 10.1261/rna.080419.125.
8
Bases in the anticodon loop of tRNA(Ala)(GGC) prevent misreading.
Nat Struct Mol Biol. 2009 Apr;16(4):353-8. doi: 10.1038/nsmb.1580. Epub 2009 Mar 22.
9
Antidepressants for pain management in adults with chronic pain: a network meta-analysis.
Health Technol Assess. 2024 Oct;28(62):1-155. doi: 10.3310/MKRT2948.

本文引用的文献

1
Serine mistranslation induces the integrated stress response through the P stalk.
J Biol Chem. 2025 May;301(5):108447. doi: 10.1016/j.jbc.2025.108447. Epub 2025 Mar 25.
2
Glutamine missense suppressor transfer RNAs inhibit polyglutamine aggregation.
Mol Ther Nucleic Acids. 2024 Dec 21;36(1):102442. doi: 10.1016/j.omtn.2024.102442. eCollection 2025 Mar 11.
3
The evolution of dbSNP: 25 years of impact in genomic research.
Nucleic Acids Res. 2025 Jan 6;53(D1):D925-D931. doi: 10.1093/nar/gkae977.
4
Mechanisms and Delivery of tRNA Therapeutics.
Chem Rev. 2024 Jun 26;124(12):7976-8008. doi: 10.1021/acs.chemrev.4c00142. Epub 2024 May 27.
5
Mistranslating the genetic code with leucine in yeast and mammalian cells.
RNA Biol. 2024 Jan;21(1):1-23. doi: 10.1080/15476286.2024.2340297. Epub 2024 Apr 17.
6
Engineered mischarged transfer RNAs for correcting pathogenic missense mutations.
Mol Ther. 2024 Feb 7;32(2):352-371. doi: 10.1016/j.ymthe.2023.12.014. Epub 2023 Dec 16.
7
Anticodon sequence determines the impact of mistranslating tRNA variants.
RNA Biol. 2023 Jan;20(1):791-804. doi: 10.1080/15476286.2023.2257471. Epub 2023 Sep 30.
8
Genetic Interaction of tRNA-Dependent Mistranslation with Fused in Sarcoma Protein Aggregates.
Genes (Basel). 2023 Feb 18;14(2):518. doi: 10.3390/genes14020518.
9
Towards a Cure for HARS Disease.
Genes (Basel). 2023 Jan 18;14(2):254. doi: 10.3390/genes14020254.
10
The tRNA identity landscape for aminoacylation and beyond.
Nucleic Acids Res. 2023 Feb 28;51(4):1528-1570. doi: 10.1093/nar/gkad007.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验