Yamanaka Taro, Ukita Jumpei, Xue Dongyi, Kondoh Chihiro, Honda Seiwa, Noguchi Maiko, Yonejima Yoshiko, Nonogaki Kiyomi, Takemura Kohji, Kizawa Rika, Yamaguchi Takeshi, Tanabe Yuko, Suyama Koichi, Ogaki Keisuke, Miura Yuji
Department of Medical Oncology, Toranomon Hospital, 2-2-2 Toranomon Minato-ku, Tokyo, 105-8470, Japan.
M3 Inc., Tokyo, Japan.
Sci Rep. 2025 Mar 21;15(1):9843. doi: 10.1038/s41598-025-93471-x.
Hand-foot skin reaction (HFSR) is a common adverse effect of vascular endothelial growth factor receptor (VEGFR) inhibitors that significantly impacts patients' quality of life. Prevention and management of HFSR require individualized approaches, but risk factors remain unclear. This study aimed to develop artificial intelligence (AI) models to predict grade ≥ 2 HFSR using clinical data and foot sole images from 93 instances of VEGFR inhibitor administration in 76 patients. Image-based, clinical information-based, and ensemble AI models achieved areas under the curve of 0.550, 0.693, and 0.699, respectively. At a high-specificity cutoff, the ensemble AI had a positive predictive value of 0.824, suggesting potential clinical utility for identifying high-risk patients. Feature importance analysis revealed heavier weight, good performance status, lack of prior VEGFR inhibitor exposure, and baseline skin toxicity as risk factors. These findings represent the first AI-based HFSR prediction models and provide insights for preventive interventions, but further accuracy improvements are needed.
手足皮肤反应(HFSR)是血管内皮生长因子受体(VEGFR)抑制剂常见的不良反应,严重影响患者的生活质量。HFSR的预防和管理需要个体化方法,但风险因素仍不明确。本研究旨在利用76例患者93次VEGFR抑制剂给药的临床数据和足底图像开发人工智能(AI)模型,以预测≥2级HFSR。基于图像、基于临床信息和集成AI模型的曲线下面积分别为0.550、0.693和0.699。在高特异性临界值下,集成AI的阳性预测值为0.824,表明在识别高危患者方面具有潜在临床应用价值。特征重要性分析显示,体重较重、体能状态良好、既往未接触过VEGFR抑制剂以及基线皮肤毒性是风险因素。这些发现代表了首个基于AI的HFSR预测模型,并为预防性干预提供了见解,但仍需进一步提高准确性。