Kang Leilei, Zhu Beien, Gu Qingqing, Duan Xinyi, Ying Lei, Qi Guodong, Xu Jun, Li Lin, Su Yang, Xing Yanan, Wang Yanlong, Li Gang, Li Rengui, Gao Yi, Yang Bing, Liu Xiao Yan, Wang Aiqin, Zhang Tao
CAS Key Laboratory of Science and Technology on Applied Catalysis, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.
Photon Science Research Center for Carbon Dioxide, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China.
Nat Chem. 2025 Jun;17(6):890-896. doi: 10.1038/s41557-025-01766-3. Epub 2025 Mar 21.
Propane dehydrogenation is an energy-intensive industrial reaction that requires high temperatures (550-750 °C) to overcome thermodynamic barriers. Here we overcome these limits and demonstrate that near-ambient propane dehydrogenation can be achieved through photo-thermo-catalysis in a water-vapour environment. We reduce the reaction temperature to 50-80 °C using a single-atom catalyst of copper supported on TiO and a continuous-flow fixed-bed reactor. The mechanism differs from conventional propane dehydrogenation in that hydrogen is produced from the photocatalytic splitting of water vapour, surface-bound hydroxyl radicals extract propane hydrogen atoms to form propylene without over-oxidation, and water serves as a catalyst. This route also works for the dehydrogenation of other small alkanes. Moreover, we demonstrate sunlight-driven water-catalysed propane dehydrogenation operating at reaction temperatures as low as 10 °C. We anticipate that this work will be a starting point for integrating solar energy usage into a wide range of high-temperature industrial reactions.
丙烷脱氢是一种能源密集型工业反应,需要高温(550 - 750°C)来克服热力学障碍。在此,我们克服了这些限制,并证明在水蒸气环境中通过光热催化可以实现近环境温度下的丙烷脱氢。我们使用负载在TiO上的铜单原子催化剂和连续流固定床反应器将反应温度降低到50 - 80°C。该反应机理与传统丙烷脱氢不同,在于氢气由水蒸气的光催化分解产生,表面结合的羟基自由基提取丙烷氢原子形成丙烯而无过度氧化,并且水充当催化剂。该途径也适用于其他小分子烷烃的脱氢反应。此外,我们展示了在低至10°C的反应温度下运行的阳光驱动的水催化丙烷脱氢反应。我们预计这项工作将成为将太阳能利用整合到广泛高温工业反应中的一个起点。