Suppr超能文献

利用药效团建模、定量构效关系、对接、药物代谢动力学/药物毒性预测、分子动力学和密度泛函理论分析发现天然MCL1抑制剂。

Discovery of natural MCL1 inhibitors using pharmacophore modelling, QSAR, docking, ADMET, molecular dynamics, and DFT analysis.

作者信息

Das Uddalak, Chanda Tathagata, Kumar Jitendra, Peter Anitha

机构信息

Department of Plant Biotechnology, University of Agricultural Sciences, Bangalore, Bengaluru, Karnataka 560065, India; School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India.

Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana 500046, India.

出版信息

Comput Biol Chem. 2025 Aug;117:108427. doi: 10.1016/j.compbiolchem.2025.108427. Epub 2025 Mar 16.

Abstract

Mcl-1, a member of the Bcl-2 family, is a crucial regulator of apoptosis, frequently overexpressed in various cancers, including lung, breast, pancreatic, cervical, ovarian cancers, leukemia, and lymphoma. Its anti-apoptotic function allows tumor cells to evade cell death and contributes to drug resistance, making it an essential target for anticancer drug development. This study aimed to discover potent antileukemic compounds targeting Mcl-1. We selected diverse molecules from the BindingDB database to construct a structure-based pharmacophore model, which facilitated the virtual screening of 407,270 compounds from the COCONUT database. An e-pharmacophore model was developed using the co-crystallized inhibitor, followed by QSAR modeling to estimate IC values and filter compounds with predicted values below the median. The top hits underwent molecular docking and MMGBSA binding energy calculations against Mcl-1, resulting in the selection of two promising candidates for further ADMET analysis. DFT calculations assessed their electronic properties, confirming favorable reactivity profiles of the screened compounds. Predictions for physicochemical and ADMET properties aligned with expected bioactivity and safety. Molecular dynamics simulations further validated their strong binding affinity and stability, positioning them as potential Mcl-1 inhibitors. Our comprehensive computational approach highlights these compounds as promising antileukemic agents, with future in vivo and in vitro validation recommended for further confirmation.

摘要

Mcl-1是Bcl-2家族的成员之一,是细胞凋亡的关键调节因子,在包括肺癌、乳腺癌、胰腺癌、宫颈癌、卵巢癌、白血病和淋巴瘤在内的多种癌症中经常过度表达。其抗凋亡功能使肿瘤细胞能够逃避细胞死亡并导致耐药性,使其成为抗癌药物开发的重要靶点。本研究旨在发现靶向Mcl-1的强效抗白血病化合物。我们从BindingDB数据库中选择了多种分子来构建基于结构的药效团模型,该模型有助于对来自COCONUT数据库的407,270种化合物进行虚拟筛选。使用共结晶抑制剂开发了一个电子药效团模型,随后进行QSAR建模以估计IC值并筛选预测值低于中位数的化合物。对排名靠前的命中化合物进行针对Mcl-1的分子对接和MMGBSA结合能计算,从而选择了两个有前景的候选化合物进行进一步的ADMET分析。DFT计算评估了它们的电子性质,证实了所筛选化合物具有良好的反应活性。对物理化学和ADMET性质的预测与预期的生物活性和安全性一致。分子动力学模拟进一步验证了它们强大的结合亲和力和稳定性,将它们定位为潜在的Mcl-1抑制剂。我们全面的计算方法突出了这些化合物作为有前景的抗白血病药物的地位,建议未来进行体内和体外验证以进一步确认。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验