Suppr超能文献

一种基于使用动态区域相位同步的局部功能连接性的精神分裂症潜在诊断生物标志物。

A potential diagnostic biomarker for schizophrenia based on local functional connectivity using dynamic regional phase synchrony.

作者信息

Du Lizhao, Huang Hongna, Pu Zhengping, Shi Yuan, Tong Shanbao, Sun Junfeng, Cui Donghong

机构信息

Shanghai Med-X Engineering Research Center, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China; Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai, China.

Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai, China.

出版信息

Schizophr Res. 2025 Apr;278:57-64. doi: 10.1016/j.schres.2025.03.013. Epub 2025 Mar 22.

Abstract

OBJECTIVES

Though schizophrenia (SZ) has the well-established diagnostic criteria, the clinical conundrum of diagnostic inaccuracies still exists for its symptomatic overlap with other mental diseases like bipolar disorder (BD). Researchers have been looking for more specific and objective neuroimaging markers for SZ.

METHODS

Functional magnetic resonance imaging (fMRI) and T1 data from a total of 931 participants (SZ: 300; BD: 145; and healthy controls (HC): 486) were collected from two centers. Dynamic regional phase synchrony (DRePS) of BOLD signals were analyzed, as a potential discriminator from both HC and BD. Support vector machine (SVM) model, trained and tested for classifying SZ from HC in one center, was applied directly to external independent dataset. The same model was also trained and tested for classifying the SZ and BD subjects.

RESULTS

We found significant reduction of DRePS in SZ, compared with HC. There were also significant differences in DRePS between SZ and BD. Correlation analysis further showed prognostic value of DRePS for clinical behavior scoring (PANSS) (Spearman's ρ = 0.235, N = 166, p = .002, 95 % CI: [0.081, 0.378]). SVM model could obtain mean accuracies of 85 % and 72 % for classifying SZ from HC in the training center and the external center, respectively. When used for separating SZ and BD, SVM model could distinguish SZ from BD with mean accuracy ~72 %.

CONCLUSION

DRePS of BOLD signals, which is correlated with the clinical symptoms, could be a potential neuroimaging biomarker separating SZ from both HC and BD.

摘要

目的

尽管精神分裂症(SZ)有既定的诊断标准,但由于其症状与双相情感障碍(BD)等其他精神疾病存在重叠,诊断不准确的临床难题依然存在。研究人员一直在寻找更具特异性和客观性的精神分裂症神经影像学标志物。

方法

从两个中心收集了总共931名参与者(精神分裂症患者300名;双相情感障碍患者145名;健康对照者(HC)486名)的功能磁共振成像(fMRI)和T1数据。分析了BOLD信号的动态区域相位同步性(DRePS),作为区分健康对照者和双相情感障碍患者的潜在指标。在一个中心训练并测试用于从健康对照者中分类精神分裂症的支持向量机(SVM)模型,直接应用于外部独立数据集。还对同一模型进行训练和测试,以区分精神分裂症患者和双相情感障碍患者。

结果

我们发现,与健康对照者相比,精神分裂症患者的DRePS显著降低。精神分裂症患者和双相情感障碍患者之间的DRePS也存在显著差异。相关性分析进一步显示DRePS对临床行为评分(PANSS)具有预后价值(斯皮尔曼相关系数ρ = 0.235,N = 166,p = 0.002,95%置信区间:[0.081, 0.378])。支持向量机模型在训练中心和外部中心从健康对照者中分类精神分裂症的平均准确率分别为85%和72%。当用于区分精神分裂症患者和双相情感障碍患者时,支持向量机模型区分精神分裂症患者和双相情感障碍患者的平均准确率约为72%。

结论

与临床症状相关的BOLD信号的DRePS可能是将精神分裂症与健康对照者和双相情感障碍患者区分开来的潜在神经影像学生物标志物。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验