Suppr超能文献

通过基于高斯的改进局部共识空间模糊方法增强跨学科图像分割

Enhancing interdisciplinary image segmentation through a Gaussian-based modified local consensus spatial fuzzy approach.

作者信息

Das Srirupa, Dhar Suchismita

机构信息

RCC Institute of Information Technology, Kolkata, India.

Maulana Abul Kalam Azad University of Technology, West Bengal, India.

出版信息

Comput Biol Med. 2025 May;190:110053. doi: 10.1016/j.compbiomed.2025.110053. Epub 2025 Mar 22.

Abstract

This study aims to introduce a generic fuzzy-based approach tailored explicitly for classifying images originating from an array of diverse sources, having varying degrees of spectral and spatial resolutions, inhomogeneity, artifacts, and entirely distinct features. The proposed Gaussian-based Modified Local Consensus Spatial Fuzzy (GMLCSF) approach stands out as an innovative solution differing from the traditional fuzzy-based approaches and the advanced methods in the domain, if multiple imaging sources and artifacts with uncertainties are present in the datasets, i.e. satellite images and medical images, where classified visual data is essential. The initial kick of the proposed approach comes from the histogram peak associative rule, which identifies the number of clusters and initializes the centers intelligently. The consensus-inspired local spatial membership function is incorporated with the standard global membership function to eliminate the noise and inhomogeneities, during the estimation of belongingness to a class. The Gaussian, geometric, and local consensus-based spatial information is formulated to elevate the efficacy and accuracy of the framework irrespective of image sources and uncertainties. The proposed GMLCSF is an iterative process, hence to decide the stopping criteria, we have considered three conditions and discussed them in the proposed method section in detail. The proposed framework is developed and simulated in MATLAB and tested on remote sensing and MRI datasets. The quantitative effectiveness of the GMLCSF over state-of-the-art techniques has been estimated by partition coefficient, entropy, and spectral angle distance. The qualitative results as classified images were analyzed in detail and again the superiority of the approach over state-of-the-art techniques in the domain has been observed.

摘要

本研究旨在引入一种基于模糊的通用方法,该方法专门针对源自一系列不同来源的图像进行分类,这些图像具有不同程度的光谱和空间分辨率、不均匀性、伪影以及完全不同的特征。所提出的基于高斯的改进局部一致性空间模糊(GMLCSF)方法是一种创新的解决方案,与传统的基于模糊的方法以及该领域的先进方法不同,特别是当数据集中存在多个成像源和具有不确定性的伪影时,例如卫星图像和医学图像,其中分类视觉数据至关重要。所提出方法的最初灵感来自直方图峰值关联规则,该规则可识别聚类数量并智能地初始化中心。在估计属于某一类别的过程中,将受一致性启发的局部空间隶属函数与标准全局隶属函数相结合,以消除噪声和不均匀性。基于高斯、几何和局部一致性的空间信息被制定出来,以提高框架的有效性和准确性,而不考虑图像来源和不确定性。所提出的GMLCSF是一个迭代过程,因此为了确定停止标准,我们考虑了三个条件,并在“所提出的方法”部分进行了详细讨论。所提出的框架在MATLAB中开发和模拟,并在遥感和MRI数据集上进行了测试。通过分区系数、熵和光谱角距离评估了GMLCSF相对于现有技术的定量有效性。对作为分类图像的定性结果进行了详细分析,再次观察到该方法在该领域相对于现有技术的优越性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验