Suppr超能文献

非热等离子体诱导CH4与CO2重整用于垃圾填埋气处理的反应性能

Reaction performance of Non-Thermal plasma induced CO reforming of CH for landfill gas treatment.

作者信息

Sun Yiping, Zhang Kai, Qi Nana, Chao Cong, Li Xianchun, Zhang Dongke

机构信息

Beijing Key Laboratory of Emission Surveillance and Control for Thermal Power Generation, North China Electric Power University, Beijing 102206, China; Key Laboratory of Power Station Energy Transfer Conversion and System (North China Electric Power University), Ministry of Education, Beijing 102206, China.

Beijing Key Laboratory of Emission Surveillance and Control for Thermal Power Generation, North China Electric Power University, Beijing 102206, China; Key Laboratory of Power Station Energy Transfer Conversion and System (North China Electric Power University), Ministry of Education, Beijing 102206, China.

出版信息

Waste Manag. 2025 Jun 1;200:114751. doi: 10.1016/j.wasman.2025.114751. Epub 2025 Mar 21.

Abstract

Non-thermal plasma induced reforming of landfill gas into syngas is an attractive alternative approach to resource recovery from small-scale and variable landfill gas streams. The reaction performance, as indicated by reactant conversion, product yield, and reaction energy intensity, of non-thermal plasma-induced CO reforming of CH has been systematically investigated in a coaxial cylindrical dielectric barrier discharge (DBD) reactor. The reactor surface temperature distribution under varying process parameters is incorporated to investigate its impact on discharge and plasma chemical reaction. It is shown that either an increase in the DBD input power or a reduction in the inlet flow rate leads to greater CH and CO conversions and syngas yield. A higher CO to CH molar ratio improves CH conversion and syngas yield and reduces the generation of C and C hydrocarbons. The CH and CO conversions and H and CO yields reached their maximum values of 44.5 %, 27.4 %, 17.1 %, and 20.2 %, respectively, in this experiment. The O∙ radicals generated during CO splitting are crucial in enhancing CH reforming. The reaction energy intensity, defined as the ratio of the enthalpy change of the desired reactions to the DBD plasma discharge energy, increases effectively with increasing CO/CH molar ratio. The response surface methodology (RSM) is employed to explore the interactions among the three key parameters, and the response surface optimization identified optimal conditions of 80 W input power, 80 ml/min inlet flow rate, and a CH/CO molar ratio of 1.0:2.5, achieving a reaction energy intensity of 19.3 %.

摘要

非热等离子体诱导将填埋气重整为合成气是从小规模且变化的填埋气流中进行资源回收的一种有吸引力的替代方法。在同轴圆柱形介质阻挡放电(DBD)反应器中,系统地研究了非热等离子体诱导CH的CO重整反应性能,该性能通过反应物转化率、产物产率和反应能量强度来表征。考虑了不同工艺参数下反应器表面温度分布,以研究其对放电和等离子体化学反应的影响。结果表明,DBD输入功率的增加或入口流速的降低都会导致更高的CH和CO转化率以及合成气产率。较高的CO与CH摩尔比可提高CH转化率和合成气产率,并减少C和C烃类的生成。在本实验中,CH和CO转化率以及H和CO产率分别达到了最大值44.5%、27.4%、17.1%和20.2%。CO裂解过程中产生的O∙自由基对增强CH重整至关重要。反应能量强度定义为所需反应的焓变与DBD等离子体放电能量之比,它随着CO/CH摩尔比的增加而有效增加。采用响应面法(RSM)来探索三个关键参数之间的相互作用,响应面优化确定了80W输入功率、80ml/min入口流速和1.0:2.5的CH/CO摩尔比的最佳条件,实现了19.3%的反应能量强度。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验