Suppr超能文献

使用基于人工智能的CT方案测量脂肪体成分及其与住院患者严重急性胰腺炎的关联。

Measurement of adipose body composition using an artificial intelligence-based CT Protocol and its association with severe acute pancreatitis in hospitalized patients.

作者信息

Cortés Pedro, Mistretta Tyler A, Jackson Brittany, Olson Caroline G, Al Qady Ahmed M, Stancampiano Fernando F, Korfiatis Panagiotis, Klug Jason R, Harris Dana M, Dan Echols J, Carter Rickey E, Ji Baoan, Hardway Heather D, Wallace Michael B, Kumbhari Vivek, Bi Yan

机构信息

Division of Gastroenterology and Hepatology, University of Washington, Seattle, WA, USA; Division of Medicine, Mayo Clinic, Jacksonville, FL, USA.

Division of Medicine, Mayo Clinic, Jacksonville, FL, USA.

出版信息

Dig Liver Dis. 2025 Jun;57(6):1218-1225. doi: 10.1016/j.dld.2025.02.010. Epub 2025 Mar 21.

Abstract

BACKGROUND/OBJECTIVES: The clinical utility of body composition in predicting the severity of acute pancreatitis (AP) remains unclear. We aimed to measure body composition using artificial intelligence (AI) to predict severe AP in hospitalized patients.

METHODS

We performed a retrospective study of patients hospitalized with AP at three tertiary care centers in 2018. Patients with computer tomography (CT) imaging of the abdomen at admission were included. A fully automated and validated abdominal segmentation algorithm was used for body composition analysis. The primary outcome was severe AP, defined as having persistent single- or multi-organ failure as per the revised Atlanta classification.

RESULTS

352 patients were included. Severe AP occurred in 35 patients (9.9%). In multivariable analysis, adjusting for male sex and first episode of AP, intermuscular adipose tissue (IMAT) was associated with severe AP, OR = 1.06 per 5 cm, p = 0.0207. Subcutaneous adipose tissue (SAT) area approached significance, OR = 1.05, p = 0.17. Neither visceral adipose tissue (VAT) nor skeletal muscle (SM) was associated with severe AP. In obese patients, a higher SM was associated with severe AP in unadjusted analysis (86.7 vs 75.1 and 70.3 cm in moderate and mild, respectively p = 0.009).

CONCLUSION

In this multi-site retrospective study using AI to measure body composition, we found elevated IMAT to be associated with severe AP. Although SAT was non-significant for severe AP, it approached statistical significance. Neither VAT nor SM were significant. Further research in larger prospective studies may be beneficial.

摘要

背景/目的:身体成分在预测急性胰腺炎(AP)严重程度方面的临床效用仍不明确。我们旨在利用人工智能(AI)测量身体成分,以预测住院患者的重症急性胰腺炎。

方法

我们对2018年在三个三级医疗中心住院的AP患者进行了一项回顾性研究。纳入入院时进行腹部计算机断层扫描(CT)成像的患者。使用经过充分自动化和验证的腹部分割算法进行身体成分分析。主要结局是重症急性胰腺炎,根据修订的亚特兰大分类法定义为持续的单器官或多器官功能衰竭。

结果

共纳入352例患者。35例(9.9%)发生重症急性胰腺炎。在多变量分析中,校正男性性别和首次发作的急性胰腺炎后,肌间脂肪组织(IMAT)与重症急性胰腺炎相关,每5厘米的比值比(OR)=1.06,p = 0.0207。皮下脂肪组织(SAT)面积接近显著水平,OR = 1.05,p = 0.17。内脏脂肪组织(VAT)和骨骼肌(SM)均与重症急性胰腺炎无关。在肥胖患者中,未校正分析显示较高的骨骼肌与重症急性胰腺炎相关(中度和轻度患者分别为86.7 vs 75.1和70.3厘米,p = 0.009)。

结论

在这项使用人工智能测量身体成分的多中心回顾性研究中,我们发现IMAT升高与重症急性胰腺炎相关。虽然SAT对重症急性胰腺炎无显著意义,但接近统计学显著性。VAT和SM均无显著意义。在更大规模的前瞻性研究中进行进一步研究可能会有所帮助。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验