Infante Victor H P, Fehlberg Maja, Saikumar Sairam, Drewing Knut, Meinke Martina C, Bennewitz Roland
INM - Leibniz Institute for New Materials, Saarbrücken, Germany.
Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Department of Dermatology, Venereology and Allergology, Center of Experimental and Applied Cutaneous Physiology, Charité - Universitätsmedizin Berlin, Berlin, Germany.
Sci Rep. 2025 Mar 22;15(1):9935. doi: 10.1038/s41598-025-95052-4.
Friction between fingertip and surface is a key contribution to tactile perception during active exploration of materials. We explore the role of skin factors such as stratum corneum thickness and hydration, deformability, elasticity, or density of sweat glands and of Meissner corpuscles in friction and tactile perception. The skin parameters were determined non-invasively for the glabrous skin at the index finger pad of 60 participants. Sets of randomly rough plastic surfaces and of micro-structured fibrillar rubber surfaces were explored as model materials with well-defined parameterized textures. Friction varies greatly between participants, and this variation can be explained to 70% by skin factors for the randomly rough plastic surfaces. The predictability of friction by skin factors is much lower for micro-structured rubber surfaces with bendable fibrils, where 50% of variance is explained for the stiffest fibrils but only 20% for the most bendable fibrils. The participants' age is the key predictor for their tactile sensitivity to perceive the fibrils, where age is negatively correlated to the density of Meissner corpuscles. The results suggest that stratum corneum hydration, skin deformability, and age are important factors for friction and perception in active tactile exploration of materials.
在对材料进行主动探索的过程中,指尖与表面之间的摩擦力是触觉感知的关键因素。我们探究了角质层厚度、水合作用、可变形性、弹性、汗腺密度以及迈斯纳小体等皮肤因素在摩擦力和触觉感知中的作用。对60名参与者食指指尖的无毛皮肤进行了非侵入性皮肤参数测定。选用了具有随机粗糙度的塑料表面和微结构化纤维状橡胶表面作为具有明确参数化纹理的模型材料进行研究。参与者之间的摩擦力差异很大,对于随机粗糙的塑料表面,这种差异的70%可由皮肤因素来解释。对于具有可弯曲纤维的微结构化橡胶表面,皮肤因素对摩擦力的预测能力要低得多,对于最硬的纤维,可解释50%的方差,而对于最可弯曲的纤维,仅能解释20%的方差。参与者的年龄是其感知纤维触觉敏感性的关键预测因素,年龄与迈斯纳小体的密度呈负相关。结果表明,角质层水合作用、皮肤可变形性和年龄是主动触觉探索材料过程中摩擦力和感知的重要因素。