Suppr超能文献

基于高分一号遥感影像的梭梭分布区提取方法研究——以磴口县为例

Study on the extraction method of Fisch. distribution area based on Gaofen-1 remote sensing imagery: a case study of Dengkou county.

作者信息

Wei Xinxin, Zhao Zeyuan, Chen Taiyang, Zhang Xiaobo, Sun Shuying, Li Minhui, Shi Tingting

机构信息

School of Life Sciences, Inner Mongolia University, Hohhot, China.

State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.

出版信息

Front Plant Sci. 2025 Mar 7;16:1517764. doi: 10.3389/fpls.2025.1517764. eCollection 2025.

Abstract

Fisch., a perennial medicinal plant with a robust root system, plays a significant role in mitigating land desertification when cultivated extensively. This study investigates Dengkou County, a semi-arid region, as the research area. First, the reflectance differences of feature types, and the importance of bands were evaluated by using the random forest (RF) algorithm. Second, after constructing the vegetation index (GUVI), the recognition accuracy of was compared between the RF classification model constructed based on the January-December GUVI and common vegetation indices feature set and the support vector machine (SVM) classification model constructed on the GUVI feature set. Finally, the spectral characteristics of and other feature types under the 2022 GUVI feature set were analyzed, and the historical distribution of was identified and mapped. The results demonstrated that the blue and near-infrared bands are particularly significant for distinguishing . Incorporating year-round (January-December) data significantly improved identification accuracy, achieving a producer's accuracy of 97.26%, an overall accuracy of 93.00%, a Kappa coefficient of 91.38%, and a user's accuracy of 97.32%. Spectral analysis revealed distinct differences with of different years and other feature types. From 2014 to 2022, the distribution of expanded from the northeast of Dengkou County to the central and southwestern regions, transitioning from small, scattered patches to larger, concentrated areas. This study highlights the effectiveness of GUVI and RF classification models in identifying , demonstrating superior performance compared to models using alternative feature sets or algorithms. However, the generalizability of the RF model based on the GUVI feature set may be limited due to the influence of natural and anthropogenic factors on . Therefore, regional adjustments and optimization of model parameters may be necessary. This research provides a valuable reference for employing remote sensing technology to accurately map the current and historical distribution of in regions with similar environmental conditions.

摘要

梭梭是一种根系发达的多年生药用植物,广泛种植时在减轻土地沙漠化方面发挥着重要作用。本研究以半干旱地区磴口县作为研究区域。首先,使用随机森林(RF)算法评估了地物类型的反射率差异以及波段的重要性。其次,构建植被指数(GUVI)后,比较了基于1月至12月GUVI构建的RF分类模型与基于常见植被指数特征集构建的RF分类模型以及基于GUVI特征集构建的支持向量机(SVM)分类模型在梭梭识别精度上的差异。最后,分析了2022年GUVI特征集下梭梭及其他地物类型的光谱特征,并识别和绘制了梭梭的历史分布。结果表明,蓝光和近红外波段对于区分梭梭尤为重要。纳入全年(1月至12月)数据显著提高了识别精度,生产者精度达到97.26%,总体精度达到93.00%,卡帕系数为91.38%,用户精度为97.32%。光谱分析揭示了不同年份梭梭与其他地物类型之间存在明显差异。2014年至2022年,梭梭的分布从磴口县东北部扩展至中部和西南部地区,从小而分散的斑块转变为更大、更集中的区域。本研究突出了GUVI和RF分类模型在梭梭识别中的有效性,与使用替代特征集或算法的模型相比表现更优。然而,由于自然和人为因素对梭梭的影响,基于GUVI特征集的RF模型的通用性可能有限。因此,可能需要进行区域调整和模型参数优化。本研究为利用遥感技术准确绘制类似环境条件地区梭梭的当前和历史分布提供了有价值的参考。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3880/11925911/920d2db38686/fpls-16-1517764-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验