Wang Zihan, Wang Lei, Li Shaoshuo, Chen Xin, Chen Bo, Lou Zhichao, Li Zheng, Deng Rongrong, Xie Lin, Wang Jianwei, Liu Xin, Kang Ran
Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Jiangsu Province, 210028, PR China.
Wuxi Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangsu Province, 214000, PR China.
Mater Today Bio. 2025 Mar 5;31:101625. doi: 10.1016/j.mtbio.2025.101625. eCollection 2025 Apr.
Lumbar disc degeneration due to annulus fibrosus (AF) defects poses a significant challenge in clinical treatment Current treatments exhibit limited repair efficacy and a high recurrence rate. To address this, we devised a novel approach of crosslinking stabilization strategy. We integrated fibrinogen, thrombin, genipin, and human bone marrow-derived mesenchymal stem cells (hBMSCs) hydrogel (FTGB) with acellular scaffold and fascia (FTGB@S@F) to remediate AF defects. FTIR analysis confirmed stable chemical crosslinking within the FTGB hydrogel. FTGB hydrogel demonstrated superior biocompatibility compared to the FB hydrogel, with significantly higher cell viability (97.60 ± 2.02 % 81.43 ± 4.50 %, P < 0.01) and enhanced proliferation and migration, as shown in DAPI, Edu and phalloidin staining. Atomic force microscopy (AFM) revealed that FTGB@S has a dense reticular structure, enhancing material performance with higher elastic modulus than FB@S. MTS testing showed that FTGB@S@F outperformed other groups in resisting cyclic axial load (25.53 ± 1.17 MPa) and maintaining disc height (0.57 ± 0.12 mm), with stable axial compression resistance and minimal deformation. It also exhibited the lowest rupture ROM (1.45 ± 0.17 mm) and a rupture modulus close to the Intact control, demonstrating its potential to restore AF mechanical function. MRI imaging revealed that the FTGB@S@F group preserved an intact AF structure with high signal intensity, a significantly larger NP area (223.64 ± 73.32 mm 137.30 ± 75.31 mm, P < 0.05), and higher disc height (102.5 ± 73.32 % 88.50 ± 12.86 %, P < 0.05). Histology confirmed superior AF repair and reduced NP degeneration in the FTGB@S@F group compared to the Un-repair and FB@S@F groups. Transcriptomic analysis identified upregulation of PIGR and downregulation of COL4A3, linked to the PI3K-Akt pathway. Immunohistochemical and qPCR analyses showed enhanced expression of COL1, Aggrecan, and RhoA, indicating effective regeneration.
由于纤维环(AF)缺陷导致的腰椎间盘退变在临床治疗中构成了重大挑战。目前的治疗方法修复效果有限且复发率高。为了解决这一问题,我们设计了一种新型的交联稳定策略。我们将纤维蛋白原、凝血酶、京尼平与人骨髓间充质干细胞(hBMSCs)水凝胶(FTGB)与脱细胞支架和筋膜整合(FTGB@S@F)以修复AF缺陷。傅里叶变换红外光谱(FTIR)分析证实了FTGB水凝胶内稳定的化学交联。与FB水凝胶相比,FTGB水凝胶表现出卓越的生物相容性,细胞活力显著更高(97.60±2.02%对81.43±4.50%,P<0.01),并且增殖和迁移增强,如4′,6-二脒基-2-苯基吲哚(DAPI)、5-乙炔基-2′-脱氧尿苷(Edu)和鬼笔环肽染色所示。原子力显微镜(AFM)显示FTGB@S具有致密的网状结构,与FB@S相比,其弹性模量更高,增强了材料性能。甲基噻唑基四唑(MTS)测试表明,FTGB@S@F在抵抗循环轴向载荷(25.53±1.17兆帕)和维持椎间盘高度(0.57±0.12毫米)方面优于其他组,具有稳定的轴向抗压性和最小变形。它还表现出最低的破裂活动范围(1.45±0.17毫米)和接近完整对照组的破裂模量,证明其恢复AF机械功能的潜力。磁共振成像(MRI)显示,FTGB@S@F组保留了完整的AF结构,信号强度高,髓核(NP)面积显著更大(223.64±73.32平方毫米对137.30±75.31平方毫米,P<0.05),椎间盘高度更高(102.5±73.32%对88.50±12.86%,P<0.05)。组织学证实,与未修复组和FB@S@F组相比,FTGB@S@F组的AF修复更优,NP退变减少。转录组分析确定了与磷脂酰肌醇-3-激酶-蛋白激酶B(PI3K-Akt)途径相关的多聚免疫球蛋白受体(PIGR)上调和IV型胶原α3链(COL4A3)下调。免疫组织化学和定量聚合酶链反应(qPCR)分析显示I型胶原(COL1)、聚集蛋白聚糖和RhoA的表达增强,表明有效再生。