Sarkar Bitan, Ni Yang
De partment of Statistics, Texas A&M University, College Station, TX 77843, United States.
Department of Statistics and Data Sciences, The University of Texas, Austin, TX 78705, United States.
Bioinformatics. 2025 Mar 29;41(4). doi: 10.1093/bioinformatics/btaf130.
Mendelian randomization (MR) infers causal relationships between exposures and outcomes using genetic variants as instrumental variables. Typically, MR considers only a pair of exposure and outcome at a time, limiting its capability of capturing the entire causal network. We overcome this limitation by developing MR.RGM (Mendelian randomization via reciprocal graphical model), a fast R-package that implements the Bayesian reciprocal graphical model and enables practitioners to construct holistic causal networks with possibly cyclic/reciprocal causation and proper uncertainty quantifications, offering a comprehensive understanding of complex biological systems and their interconnections.
We developed MR.RGM, an open-source R package that applies bidirectional MR using a network-based strategy, enabling the exploration of causal relationships among multiple variables in complex biological systems. MR.RGM holds the promise of unveiling intricate interactions and advancing our understanding of genetic networks, disease risks, and phenotypic complexities.
MR.RGM is available at CRAN (https://CRAN.R-project.org/package=MR.RGM, DOI: 10.32614/CRAN.package.MR.RGM) and https://github.com/bitansa/MR.RGM.
孟德尔随机化(MR)利用基因变异作为工具变量来推断暴露因素与结局之间的因果关系。通常情况下,MR一次仅考虑一对暴露因素和结局,这限制了其捕捉整个因果网络的能力。我们通过开发MR.RGM(通过互逆图形模型进行孟德尔随机化)克服了这一限制,它是一个快速的R包,实现了贝叶斯互逆图形模型,使从业者能够构建可能存在循环/互逆因果关系且具有适当不确定性量化的整体因果网络,从而全面理解复杂的生物系统及其相互联系。
我们开发了MR.RGM,这是一个开源R包,它使用基于网络的策略应用双向MR,能够探索复杂生物系统中多个变量之间的因果关系。MR.RGM有望揭示复杂的相互作用,并增进我们对基因网络、疾病风险和表型复杂性的理解。
MR.RGM可在CRAN(https://CRAN.R-project.org/package=MR.RGM,DOI:10.32614/CRAN.package.MR.RGM)以及https://github.com/bitansa/MR.RGM获取。